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Introduction

Problem formulation:

Microprocessor Microarchitecture Design Space
Exploration (DSE)

Given benchmark suites and microprocessor microarchitecture design
space, find optimal microarchitecture parameters that can achieve good
trade-offs between performance, power, and area (PPA).

Previous Methodologies & Limitations

= [ndustry:
= Expertise of computer architects. — Architects’ bias.
= Academia:

= Analytical methodologies: based on mechanistic models with intepretable
equations. — Require immense domain knowledge.

= Black-box methodologies: based on machine-learning techniques. — Require
high computing resources.

Goal & Approach:

= Goal: solve the problem by removing limitations of previous
methodologies: remove massive domain knowledge requirement &
mitigate the high computing demands.

= Approach: DSE via automated bottleneck analysis.

Rationales:

= Perfect machine: unlimited hardware resources.
= Performance is constrained only by program’s true data dependencies.

= Real machine: limited hardware resources.

= Performance is constrained by program'’s true data dependencies and resource
constraints.
= [wo distinct types of resources: deficient and exhausted & abundant and idle.

Balanced Microarchitecture

A balanced microarchitecture can simultaneously maximize the utiliza-
tion of each hardware resource. We refer to a bottleneck as insufficient
hardware resource that is exhausted by instructions and results in high
program runtime.

Findings:

We find that the relations between resource constraints and machine par-
allelism are similar to the cask effect.

How to identify the type of resources?

= The utilization status of each resource in the microexecution should be
captured.

= Whether the overlapping events matter for the execution time should
be considered. — Call for a global view of the entire microexecution,
which the critical path analysis can help.

Background & Motivation

Challenges in Microarchitecture DSE:
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Figure 1. A visualization of the design space for 458.sjeng. Each
microarchitecture is reduced to two-dimension through t-SNE to facilitate the
visualization of PPA distributions.

= Complicated design space.
= High simulation runtime.

Bottleneck Analysis Matters in DSE:

Removing microarchitecture bottlenecks can significantly enhance the PPA
trade-off.
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Figure 2. Each bar represents the microarchitecture’s metric in %. The bar, e.g., “ROB
x 2" indicates the microarchitecture is the same as the baseline except that it doubles
ROB. Perf®/(Power x Area) denotes the PPA trade-off.
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A straightforward heuristic: in the DSE, assigning necessary hardware
resources and reducing redundant ones.
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Figure 3. Search following series of small changes stepwise. PPA denotes
Perf? /(Power x Area).

Critical Path Analysis:

Instruction sequence

The former dynamic event
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Lessons Learned & Design Principles

444 namd
I1: bgeu a4, a6, -108
12: addi a5, ft0, 48
13:1d al, 112(s7)
14: c mv a4, a2
15: beq a2, a5, 214
16: beq s10, ft0, 2784

456.hmmer I 12 I3 14 I5 I6 17 18 19 110

I1: c¢_sdsp ft0, 56(sp) @
12: ¢_sdsp ft0, 64(sp)
13: ¢_sdsp ft0, 72(sp) 1 A
14: ¢_sdsp ft0, 80(sp) <D .
I5: ¢_sdsp ft0, 88(sp)
16: ¢_sdsp ft0, 96(sp) b
I7: ¢_sdsp ft0, 104(sp) ER”

18: ¢_sdsp ft0, 112(sp) 1
19: ¢_sdsp ft0, 120(sp)
110: c_sdsp ft0, 128(sp) @

17: addiw a5, a2, -48

18: addi a5, a5, 255

19:c lia4,9

110: bgeu a4, a5, 246

— Critical path
Statically assign
incorrect weight

Statically assign
false dependence !

(a) Previous DEG formulation statically assigns
edges and weights without following the actual
microexecution.

Indistinguishable

0
83 concurrent events @
assign false

dependence The critical path: 16 clock cycles = True simulation: 16 clock cycles :

(b) Previous DEG formulation cannot distinguish
overlapped events.

Figure 5. (a) and (b) uses Calipers to demonstrate three kinds of error sources.

Design Principles

= The dependencies contributing to execution time should be
captured as much as possible. — Capturing more resource usages
improves the utilization approximation.

= Concurrent events should be distinguishable. — The
distinguishability unveils whether we matter a concurrent event for
bottleneck contributions to the overall execution time.

The ArchExplorer Approach

Overview:
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Figure 6. An overview of the ArchExplorer approach.

New DEG Formulation of Microexecution:

@D T T BT D

) L D@D B T : <o o

1 @D T AT+ ®——~© SR

f% Concurrent events The coordinates of 1(14) is (10,4) IG®;®® . : . ) ' %3 %ddi 355’ f;:()’gé)l

é 2 1,-\-‘-"1 2 4 1 315 ‘ QOB QD E . 12 lv%eaz,’-;dsO)

é I4®5@;®2' CP > CH ; 5 E EIGZ' add@ a5, a5, 1

2|1 D @RS AT ; : BE B

£[ @@ GO 5 (D) —CO s i L lylwas, 36(0)

A1 L ED>* @B RO CMCP D OO

. —
Critical Path Length: 43 cycles X-axis Timeline

I$ Access Latency: 6 cycles Pipeline Latency: 20 cycles D$ Access Latency: 8 cycles True Data Dependence Latency: 3 cycles Squash Latency due to Branch Miss Prediction: 6 cycles

® Request to I$ @ Response from I$ @ Fetch Decode ®Rename Dispatch @ Issue @ Memory @ Complete @ Commit

@Merge F2&F Merge Dispatch&lIssue ® Start Vertex @ Terminate Vertex — Critical path

Figure /. An overview of the new DEG formulation of microexecution. The critical path
Is highlighted in red.

Highlights of new DEG formulation:

= Nodes represent pipeline stages, and edges represent dependencies.
= Align instructions w.r.t. the time instead of pipeline stages.

= Dynamic DEG construction.

= Ascertain the overlapped events.

Induced DEG & Critical Path Construction:

Two “skewed” edges are annotated with s; — e; and s;, — ey

= Rule 1 (Connect via time): s; is connected to s;. if the time of s is the
closest to s;.

= Rule 2 (Connect via instruction sequence): s; is connected to s;. if the
instruction sequence k is the closest to .
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Figure 8. (a) An example code snippet and its corresponding new DEG formulation. (b)
The overview of induced DEG with edge cost extracted from DEG.

Bottleneck-removal-driven DSE:
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Figure 2. An overview of the dynamic
event-dependence graph.

Results

Due to the limited poster space, we only showcase the main results. For
experiment setup and detailed results, please refer to our paper.

Comparison w. DSE Methodologies:
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Figure 10. The visualization of Pareto hypervolume curves in terms of the number of
simulations.
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Figure 11. The visualization of Pareto frontiers and the distributions of PPA trade-offs
for all methods.

Comparison w. Best Balanced Designs:
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Figure 12. Comparisons between the Pareto designs in performance and power.

= ArchExplorer can find better PPA Pareto-optimal designs, achieving an
average of 6.80% higher Pareto hypervolume using at most 74.63%
fewer simulations compared to the state-of-the-art approaches.




