
Fast and Efficient DNN Deployment via Deep Gaussian Transfer Learning
Appendix

1. Pseudo-code
The pseudo-codes of our framework are shown in Algo-

rithm 1 and Algorithm 2. Note that the pseudo-codes focus
on the transfer learning and optimum searching, while the
model preparations are ignored.

Algorithm 1 DNN Deployment Flow via Deep Gaussian
Transfer Learning

Input: A DNN model with L tasks, with the configuration
set {D1, · · · ,DL}, and type set {t1, · · · , tL}; N types
of pre-trained DGP {G1, · · · , GN}; size of the random
set r, size of the tuning set s, size of the final deployed
configurations e.

Output: The optimal configurations D∗ = {d∗1, · · · , d∗L}.
1: D∗ ← ∅;
2: for l = 1→ L do
3: tl = type of layer l;
4: G′

l = TL(Gtl ,Dl, r, s); ▷ Algorithm 2
5: Run simulated annealing with G′

l as the perfor-
mance estimator, record the explored best e configu-
rations X;

6: Deploy X on hardware, get the real performance Y ;
7: d∗l is the configuration with best performance in X;
8: D∗ ← D∗ ∪ d∗l ;
9: end for

10: return The optimal configuration set D∗;

Algorithm 2 Transfer Learning – TL(G,D, r, s)
Input: A pre-trained DGP model G, the configuration

spaceD, size of the random set r, and size of the tuning
set s.

Output: The tuned DGP model G′.
1: Randomly sample a setR from D, with |R| = r;
2: PassR to G, to get the predicted performance P;
3: Sort P and select the top s configurations TX ;
4: Deploy TX on hardware, get the real performance TY ;
5: Tune G with {TX , TY }, according to Formulation (6),

the tuned model is Gt;
6: return The tuned DGP model Gt;

2. Experimental Settings

The feature encodings for the models are listed in Ta-
ble 1. Further, tile f, tile y, and tile x are tiled into four
axes, corresponding to the number of blocks, the number of
virtual threads, the number of threads, and the number of
loops in each thread. tile rc, tile ry, and tile rx are tiled into
two axes, corresponding to the number of threads, and the
number of loops in each thread. Note that for the depthwise
convolutional layers in MobileNet-v1, there are no tile rc,
tile ry, and tile rx because of the special structures of the
depthwise convolutions. In all, for the common convolu-
tional layers, the length of the feature vector is 20, and for
the depthwise convolutional layers, the length of the feature
vector is 14.

Details of the DNN models and layers used in our exper-
iments are listed in Table 2, Table 3, Table 4, and Table 5,
where “# of Space” is the number of configurations in the
design space, “Group Index” is the index of the group to
which this layer belongs, c represents the size of input fea-
tures, k represents the size of the kernel, s represents the
step size of the stride, p represents the size of the padding.

Table 1: Features Encodings

Feature Description

tile f # of output channels
tile y height of input features
tile x width of input features
tile rc # of input channels
tile ry height of kernels
tile rx width of kernels

auto unroll max step Maxiumal # of steps in the loop
to be unrolled automatically

unroll explicit whether add unroll pragmas explicitly
in the generated CUDA code

Our DGP model is implemented based on GPyTorch [1].
The radial basis function is the kernel function. In our DGP
model, there are two hidden layers with the hidden dimen-
sions 10 and 14, and the number of inducing points is 128.
During training, the optimizer is Adam, the learning rate is
0.04, and the maximal training epoch is 3000. The training
batch size is 256. The learning rate is adjusted progres-

1

sively according to the reductions of RMSE (root-mean-
square-error) of the predicted GFLOPS. During the transfer
learning stage, 40000 configurations are randomly sampled
from the configuration space, and then the top 300 configu-
rations are used to tune the model, i.e., r = 40000, s = 300
while calling Algorithm 2. The maximal tuning epoch is
2000, and the learning rate is 0.04. To compensate for the
losses of using our DGP model instead of the real hardware,
the stopping criterion of our method is no performance im-
provements in 600 iterations, or at most 40000 configura-
tions have been explored by our method. Since our DGP
model is used in replacement of the real hardware, the com-
putations of the configurations are much faster. Finally, af-
ter the searching process, the configurations with the top
100 predicted performance values (i.e., e = 100 in Algo-
rithm 1) are compiled and run on GPU. The configuration
with the highest on-board performance is chosen as the fi-
nal optimal configuration. The settings of AutoTVM are the
same as CHAMELEON [2].

3. Experimental Results
In Section 4.3, the randomly sampled configurations and

the configurations selected via our pre-trained DGP are
compared. More results are plotted in the following figures:
Figure 1, Figure 2, Figure 3, and Figure 4. For each task,
300 configurations are sampled, and the data are in descend-
ing order. The results show the efficiencies of our DGP
model while choosing tuning sets for new tasks. The ran-
dom method samples lots of invalid configurations on the
hardware while doing no favor to the tuning of the model.
In comparison, our DGP can choose more useful configu-
rations and the GFLOPS values are continuous in the value
space. Besides, the maximal GFLOPS values sampled by
DGP are higher which would help introduce more informa-
tion for the new prediction tasks.

GFLOPS results of the DNN models are plotted in Fig-
ure 5. The results show that our method wins on most lay-
ers.

References
[1] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel,

and A. G. Wilson, “GPyTorch: Blackbox matrix-matrix
Gaussian process inference with GPU acceleration,” in
Proc. NIPS, 2018. 1

[2] B. H. Ahn, P. Pilligundla, A. Yazdanbakhsh, and H. Es-
maeilzadeh, “CHAMELEON: Adaptive code optimiza-
tion for expedited deep neural network compilation,” in
Proc. ICLR, 2020. 2

Table 2: Details of AlexNet

Task Index Name # of Space Group Index Layer Description

1 conv5 570240 1 c = 256× 13× 13, k = 256× 256× 13× 13, s = 1, p = 1
2 conv4 1013760 1 c = 384× 13× 13, k = 256× 384× 3× 3, s = 1, p = 1
3 conv3 2580480 1 c = 192× 13× 13, k = 384× 192× 3× 3, s = 1, p = 1
4 conv2 22579200 2 c = 64× 27× 27, k = 192× 64× 5× 5, s = 1, p = 2
5 conv1 1032192 3 c = 3× 224× 224, k = 64× 3× 11× 11, s = 4, p = 2

Table 3: Details of ResNet-18

Task Index Name # of Space Group Index Layer Description

1 rb4-conv2 844800 1 c = 512× 7× 7, k = 512× 512× 3× 3, s = 1, p = 1
2 rb4-conv1 760320 2 c = 256× 14× 14, k = 512× 256× 3× 3, s = 2, p = 1
3 rb3-conv2 9123840 1 c = 256× 14× 14, k = 256× 256× 3× 3, s = 1, p = 1
4 rb3-conv1 8110080 2 c = 128× 28× 28, k = 256× 128× 3× 3, s = 2, p = 1
5 rb2-conv2 36864000 1 c = 128× 28× 28, k = 128× 128× 3× 3, s = 1, p = 1
6 rb2-conv1 32256000 2 c = 64× 56× 56, k = 128× 64× 3× 3, s = 2, p = 1
7 rb1-conv1 90316800 1 c = 64× 56× 56, k = 64× 64× 3× 3, s = 1, p = 1
8 conv0 79027200 3 c = 3× 224× 224, k = 64× 3× 7× 7, s = 2, p = 3
9 rb1-sc 22579200 4 c = 64× 56× 56, k = 64× 64× 1× 1, s = 1, p = 1

10 rb2-sc 8064000 4 c = 64× 56× 56, k = 128× 64× 1× 1, s = 1, p = 1
11 rb3-sc 2027520 4 c = 128× 28× 28, k = 256× 128× 1× 1, s = 1, p = 1
12 rb4-sc 190080 4 c = 256× 14× 14, k = 512× 256× 1× 1, s = 1, p = 1

Table 4: Details of VGG-16

Task Index Name # of Space Group Index Layer Description

1 conv4-3 13516800 1 c = 512× 14× 14, k = 512× 512× 3× 3, s = 1, p = 1
2 conv4-2 8448000 1 c = 512× 28× 28, k = 512× 512× 3× 3, s = 1, p = 1
3 conv4-1 76032000 1 c = 256× 28× 28, k = 512× 256× 3× 3, s = 1, p = 1
4 conv3-2 228096000 1 c = 256× 56× 56, k = 256× 256× 3× 3, s = 1, p = 1
5 conv3-1 202752000 1 c = 128× 56× 56, k = 256× 128× 3× 3, s = 1, p = 1
6 conv2-2 451584000 1 c = 128× 112× 112, k = 128× 128× 3× 3, s = 1, p = 1
7 conv2-1 395136000 1 c = 64× 112× 112, k = 128× 64× 3× 3, s = 1, p = 1
8 conv1-2 708083712 1 c = 64× 224× 224, k = 64× 64× 3× 3, s = 1, p = 1
9 conv1-1 202309632 1 c = 3× 224× 224, k = 64× 3× 3× 3, s = 1, p = 1

Table 5: Details of MobileNet-v1

Task Index Name # of Space Group Index Layer Description

1 sp-13-conv2 302016 1 c = 1024× 7× 7, k = 1024× 1024× 1× 1, s = 1, p = 0
2 sp-13-dp1 27456 2 c = 1024× 7× 7, k = 1024× 1× 3× 3, s = 2, p = 1
3 sp-12-conv2 274560 1 c = 512× 7× 7, k = 1024× 512× 1× 1, s = 1, p = 0
4 sp-12-dp1 21120 2 c = 512× 14× 14, k = 512× 1× 3× 3, s = 2, p = 1
5 sp-7-conv2 3379200 1 c = 512× 14× 14, k = 512× 512× 1× 1, s = 4, p = 0
6 sp-7-dp1 337920 3 c = 512× 14× 14, k = 512× 1× 3× 3, s = 1, p = 1
7 sp-6-conv2 3041280 1 c = 256× 14× 14, k = 512× 256× 1× 1, s = 1, p = 0
8 sp-6-dp1 253440 2 c = 256× 28× 28, k = 256× 1× 3× 3, s = 2, p = 1
9 sp-5-conv2 14256000 1 c = 256× 28× 28, k = 256× 256× 1× 1, s = 1, p = 0
10 sp-5-dp1 1584000 3 c = 256× 28× 28, k = 256× 1× 3× 3, s = 1, p = 1
11 sp-4-conv2 12672000 1 c = 128× 28× 28, k = 256× 128× 1× 1, s = 1, p = 0
12 sp-4-dp1 1152000 2 c = 128× 56× 56, k = 128× 1× 3× 3, s = 2, p = 1
13 sp-3-conv2 36864000 1 c = 128× 56× 56, k = 128× 128× 1× 1, s = 1, p = 0
14 sp-3-dp1 4608000 3 c = 128× 56× 56, k = 128× 1× 3× 3, s = 1, p = 1
15 sp-2-conv2 32256000 1 c = 64× 56× 56, k = 128× 64× 1× 1, s = 1, p = 0
16 sp-2-dp-1 3225600 2 c = 64× 112× 112, k = 64× 1× 3× 3, s = 2, p = 1
17 sp-1-conv1 59270400 1 c = 32× 112× 112, k = 64× 32× 1× 1, s = 1, p = 0
18 sp-1-dp-1 6585600 3 c = 32× 112× 112, k = 32× 1× 3× 3, s = 1, p = 1
19 conv1 52684800 4 c = 3× 224× 224, k = 32× 3× 3× 3, s = 2, p = 1

0 150 300
0

900

1,800

G
FL

O
PS

Random Our DGP

(a) Task 1 (conv5)

0 150 300
0

900

1,800

(b) Task 2 (conv4)

0 150 300
0

1,200

2,400

(c) Task 3 (conv3)

0 150 300
0

2,700

5,400

(d) Task 4 (conv2)

0 150 300
0

900

1,800

(e) Task 5 (conv1)

Figure 1: The tuning sets of AlexNet. The data are in descending order.

0 150 300
0

800

1,600

G
FL

O
PS

Random Our DGP

(a) Task 1 (rb4-conv2)

0 150 300
0

600

1,200

(b) Task 2 (rb4-conv1)

0 150 300
0

1,500

3,000

(c) Task 3 (rb3-conv2)

0 150 300
0

1,000

2,000

(d) Task 4 (rb3-conv1)

0 150 300
0

1,500

3,000

(e) Task 5 (rb2-conv2)

0 150 300
0

1,300

2,600

G
FL

O
PS

(f) Task 6 (rb2-conv1)

0 150 300
0

2,000

4,000

(g) Task 7 (rb1-conv1)

0 150 300
0

2,500

5,000

(h) Task 8 (conv0)

0 150 300
0

1,400

2,800

(i) Task 9 (rb1-sc)

0 150 300
0

800

1,600

(j) Task 10 (rb2-sc)

0 150 300
0

600

1,200

G
FL

O
PS

(k) Task 11 (rb3-sc)

0 150 300
0

350

700

(l) Task 12 (rb4-sc)

Figure 2: The tuning sets of ResNet-18. The data are in descending order.

0 150 300
0

2,500

5,000

G
FL

O
PS

Random Our DGP

(a) Task 1 (conv4-3)

0 150 300
0

3,600

7,200

(b) Task 2 (conv4-2)

0 150 300
0

3,500

7,000

(c) Task 3 (conv4-1)

0 150 300
0

4,300

8,600

(d) Task 4 (conv3-2)

0 150 300
0

4,000

8,000

(e) Task 5 (conv3-1)

0 150 300
0

4,000

8,000

G
FL

O
PS

(f) Task 6 (conv2-2)

0 150 300
0

3,500

7,000

(g) Task 7 (conv2-1)

0 150 300
0

4,500

9,000

(h) Task 8 (conv1-2)

0 150 300
0

1,700

3,400

(i) Task 9 (conv1-1)

Figure 3: The tuning sets of VGG-16. The data are in descending order.

0 150 300
0

900

1,800

G
FL

O
PS

Random Our DGP

(a) Task 1 (sp13-conv2)

0 150 300
0

900

1,800

(b) Task 2 (sp13-dp1)

0 150 300
0

900

1,800

G
FL

O
PS

(c) Task 3 (sp12-conv2)

0 150 300
0

200

400

(d) Task 4 (sp12-dp1)

0 150 300
0

1,200

2,400

(e) Task 5 (sp7-conv2)

0 150 300
0

400

800

G
FL

O
PS

(f) Task 6 (sp7-dp1)

0 150 300
0

1,500

3,000

(g) Task 7 (sp6-conv2)

0 150 300
0

300

600

(h) Task 8 (sp6-dp1)

0 150 300
0

1,500

3,000

(i) Task 9 (sp5-conv2)

0 150 300
0

600

1,200

(j) Task 10 (sp5-dp1)

0 150 300
0

1,400

2,800

G
FL

O
PS

(k) Task 11 (sp4-conv2)

0 150 300
0

600

1,200

(l) Task 12 (sp4-dp1)

0 150 300
0

1,300

2,600

(m) Task 13 (sp3-conv2)

0 150 300
0

500

1,000

(n) Task 14 (sp3-dp1)

0 150 300
0

1,500

3,000

(o) Task 15 (sp2-conv2)

0 150 300
0

300

600

G
FL

O
PS

(p) Task 16 (sp2-dp1)

0 150 300
0

1,100

2,200

(q) Task 17 (sp1-conv1)

0 150 300
0

500

1,000

(r) Task 18 (sp1-dp1)

0 150 300
0

1,100

2,200

(s) Task 19 (conv1)

Figure 4: The tuning sets of MobileNet. The data are in descending order.

cv
1

sp
1-d

p1

sp
1-c

v1

sp
2-d

p1

sp
2-c

v2

sp
3-d

p1

sp
3-c

v2

sp
4-d

p1

sp
4-c

v2

sp
5-d

p1

sp
5-c

v2

sp
6-d

p1

sp
6-c

v2

sp
7-d

p1

sp
7-c

v2

sp
12

-dp
1

sp
12

-cv
2

sp
13

-dp
1

sp
13

-cv
2

0

100

150

G
FL

O
PS

(%
)

Ours AutoTVM

(a) MobileNet-v1

co
nv

1
co

nv
2
co

nv
3
co

nv
4
co

nv
5

20

100
120

G
FL

O
PS

(%
)

(b) AlexNet

co
nv

1-1

co
nv

1-2

co
nv

2-1

co
nv

2-2

co
nv

3-1

co
nv

3-2

co
nv

4-1

co
nv

4-2

co
nv

4-3
20

100

180

(c) VGG-16

rb4-sc
rb3-sc

rb2-sc
rb1-sc

conv0

rb1-co
nv1

rb2-co
nv1

rb2-co
nv2

rb3-co
nv1

rb3-co
nv2

rb4-co
nv1

rb4-co
nv2

20

100
120

(d) ResNet-18

Figure 5: The ratios of the GFLOPS values of various DNN models.

