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Abstract—Large language models (LLMs) show viability for
artificial general intelligence (AGI) with high computing power
and memory bandwidth demands. While existing LLM accelera-
tors leverage high-bandwidth memory (HBM) and 2.5D packaging
to address the challenge, emerging hybrid bonding techniques
unlock new opportunities for 3D-stacked LLM accelerators. This
paper proposes AccelStack, a cost-driven analysis for the new
architecture via two innovations. First, a performance model
capturing memory-on-logic is presented. Second, a cost model
for die-on-die (DoD), die-on-wafer (DoW), and wafer-on-wafer
(WoW) is proposed. Evaluations show 3D-stacked accelerators
achieve up to 7.17× and 2.09× faster inference than NVIDIA
A100 (FP16) and H100 (FP8) simulation results across various
LLM workloads, with chiplet-based designs reducing recurring
engineering costs by 38.09% versus monolithic implementations.

I. INTRODUCTION

Large language models (LLMs) are profoundly changing our
industry, driving innovations from code generation, intelligent
agents, to complex problem-solving with a slow-thinking fash-
ion [1]–[3].

The inference process of LLMs can be divided into two
key stages: prefill and decoding. The prefill stage is compute-
bound, primarily due to its reliance on general matrix multipli-
cations (GEMM). In contrast, the decoding stage is dominated
by general matrix-vector multiplications (GEMV), making it
inherently memory-bound. Beyond raw computing power, this
auto-regressive inference process places substantial demands
on memory bandwidth.

Many LLM accelerators are proposed to catch up with high
computing power and memory bandwidth demand accordingly
[4]–[9]. The main ideas behind existing solutions are threefold.
First, customized computing units are applied. Systolic array,
tensor cores, 3D cube unit, etc., are proposed to handle the
massive GEMM operations [4]–[7]. Second, architect LLM
accelerators with new memory technology. HBM is adopted
to replace traditional double-data-rate (DDR) SDRAMs [4]–
[6], [9]. By vertically integrating multiple SDRAM dies using
microbumps, HBMs achieve far wider data buses, resulting
in significant memory bandwidth improvements [10]. Third,
advanced 2.5D packaging brings memory closer to the compute
units, leading to reduced memory access latency. For example,
silicon interposers or bridges substitute conventional dual in-
line memory module (DIMM) links with shorter interconnec-
tions [11], [12].
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Fig. 1 Overview of 3D-stacked LLM accelerator architecture
landscape. Multiple DRAM dies are hybrid-bonded together
and subsequently hybrid-bonded to the underlying compute die.
The design is then mounted onto a package substrate.

New opportunities are now emerging with advancements
in hybrid bonding techniques [13], [14]. The advancements
make 3D-stacked architectures a compelling solution for next-
generation LLM accelerators by enabling denser and shorter
vertical interconnects compared to existing solutions. So, we
propose a landscape of 3D-stacked LLM accelerator archi-
tecture in this paper accordingly (Fig. 1). We consider the
memory-on-logic design rather than logic-on-memory, as the
latter requires additional space for through-silicon vias (TSVs)
to deliver power to the logic die, increasing die size and
reducing memory density [15]. The proposed architecture land-
scape offers two immediate benefits. First, bonding pitches and
pad sizes are 5 ∼ 30× smaller than those of microbumps
[14]. Hence, higher memory bandwidth than HBM is available.
Second, compared to 2.5D packaging, the shorter interconnect
distances between memory and compute units indicate that
smaller gate-to-gate delay and lower power dissipation per bit
transmission are free lunches.

However, these opportunities come with notable challenges.
The massive adoption of 3D-stacked LLM accelerators hinges
on two critical technological metrics: performance and manu-
facturing cost. Performance quantifies its superiority over tradi-
tional LLM accelerators, whereas cost determines its economic
feasibility. Ensuring cost-effectiveness remains a primary con-
cern for investments in high-volume manufacturing (HVM) of
3D-stacked LLM accelerators.

To address this gap, we present AccelStack, a cost-driven
analysis framework for 3D-stacked LLM accelerators. Ac-
celStack integrates performance analysis and cost modeling
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Fig. 2 Overview of LLM inference.

to evaluate the feasibility of the architecture. Its highlights
span two aspects. First, AccelStack introduces a holistic per-
formance model that captures achievable memory bandwidth
improvements due to hybrid bonding, while also supporting
“chipletized” designs with diverse packaging techniques and
distinct LLM parallelization strategies. Second, a cost model
is presented. Especially, it involves the modeling for different
hybrid-bonding-enabled 3D integration manufacturing flows,
including die-on-die (DoD), die-on-wafer (DoW), and wafer-
on-wafer (WoW) 1. We aim to identify the new architecture’s
performance-cost trade-offs, paving the way for the practical
deployment in real-world applications. Our contributions are
summarized as follows:

• We propose a landscape of 3D-stacked LLM accelerators,
along with their chipletized variants.

• A performance model that characterizes 3D-stacked LLM
accelerators is introduced.

• A cost model supports DoD, DoW, and WoW hybrid
bonding manufacturing flows is proposed in AccelStack.

• Evaluations show 3D-stacked accelerators achieve up to
7.17× and 2.09× faster inference than A100 (FP16) and
H100 (FP8) simulation results across LLM workloads,
with chiplet-based designs reducing recurring engineering
costs by 38.09% versus monolithic implementations.

The remainder of this paper is organized as follows. Sec-
tion II provides preliminaries. Section III details AccelStack
framework. Section IV is for experiments. Finally, Section V
concludes this paper.

II. PRELIMINARIES

In this section, Section II-A overviews LLM inference, Sec-
tion II-B summarizes 3D integration and chiplet technology,
and Section II-C introduces cost analysis.

A. LLM Inference

LLM inference is autoregressive, generating each token based
on previously generated ones. The prefill stage generates the
first output token, while the decoding stage produces the
subsequent tokens until the response is complete.

1Although hybrid-bonding in the DoD flow is not yet ready for volume
production, AccelStack supports this technique in anticipation of its eventual
realization [16].

Fig. 2 shows an inference pipeline. The example input
sequence (e.g., “AccelStack means”) is denoted by an array of
tokens with different colors for better visualization. The token
sequence is handled by stacked layers of multi-head attention
(MHA) operation and feed-forward network. MHA is defined
as

MHA(Q,K,V ) = softmax(
QK>√

d
)V , (1)

where Q, K, and V are query, key, and value matrices, respec-
tively. d is the dimension of the query or key in Equation (1).

During the prefill stage, the KV cache is generated to
accelerate the inference [17]. The first output token (i.e., “Ac-
celerator”) is appended to the previous input tokens after the
prefill stage. In the decode stage, tokens are reprocessed by
the LLM, generating a new token in the next iteration, until a
special token (e.g., “<EOS>”) is generated. The special token
signifies a finished inference. In each iteration, the KV cache
is reused and enlarged due to new tokens generated.

B. 3D Integration & Chiplet Technology

3D integration stacks multiple chips vertically to create a
higher-density integrated circuits. TSVs are needed. Two main-
stream approaches are widely adopted. The first uses mi-
crobumps, which are small, raised metal structures, with di-
ameters in the tens of micrometers. HBM and Ponte Vecchio
are examples [10], [18]. The second is bumpless integration
with hybrid bonding [14]. Hybrid bonding combines dielectric
and metal bonding (e.g., Cu-Cu bond [19]). This process begins
with low-temperature and low-pressure alignment, followed by
annealing at 150 ∼ 300◦C [20].

Chiplet technology reduces manufacturing costs at advanced
technology nodes by disassembling a large monolithic system-
on-chip (SoC) into several smaller chips [18], [21], [22]. These
smaller chips are interconnected and packaged together to per-
form the same functions as the original monolithic design. Be-
sides lowering manufacturing costs, chiplet technology offers
two additional merits. On one hand, die-to-die interfaces and
interconnections, e.g., universal chiplet interconnect express
(UCIe), facilitates chiplet reuse [23]. This allows the production
of new, low-cost products while meeting strict time-to-market
requirements. On the other hand, it enables hetergeneous in-
tegration. Specifically, multiple chiplets manufactured using
different technology nodes, materials, and sourced from various
fabless design houses and foundries can be packaged together.
The packaging solutions encompass conventional multi-chip
module (MCM) and advanced 2.5D packaging, such as CoWoS
(Chip-on-Wafer-on-Substrate) and EMIB (Embedded Multi-
Die Interconnect Bridge). [11], [12], [24]. MCM integrates
dies onto a unified package substrate. CoWoS with silicon
interposer (CoWoS-S) employs a full-sized interposer, while
EMIB utilizes localized bridge structures [11], [12].

C. Cost Analysis

The cost of 3D-stacked LLM accelerators can be divided into
recurring engineering (RE) costs and non-recurring engineering
(NRE) costs [25]. NRE costs are one-time expenses incurred
during the design phase, covering activities such as software

2



Performance Model
(Section III-C)

Cost Model
(Section III-D)

Parallelism Strategy

Scheduling

Software-level

Mapping

Hardware-level
MatMul. Model

3D DRAM & NoC

Scale-up System

Reports 

Chiplet Design

Monolithic Chip
NRE Cost

Planar Packaging

3D Integration
RE Cost

LLM Spec.

Architecture Spec.

User Input

AccelStack

Fig. 3 Overview of AccelStack.

tools, IP licensing, chiplet/module/package design, verification
processes, and mask production. These costs are independent
of production volume and represent the disposable investment
required to develop the chip. Oppositely, RE costs are tied to
mass production, including wafer fabrication, packaging, and
post-production testing.

The total engineering cost combines RE costs and the
amortized portion of NRE costs, which is distributed across the
production volume. Amortization is influenced by production
scale, i.e., in low-volume production, NRE costs dominate the
overall expense, whereas for HVM, RE costs prevail as NRE’s
per-unit share diminishes

III. ACCELSTACK

This section begins with an overview of the framework in
Section III-A, followed by the modeled architecture design in
Section III-B. Section III-C describes the performance model,
while Section III-D presents the cost model.

A. Overview of AccelStack
AccelStack integrates two core models: a performance model
and a cost model. Given architecture and LLM workload speci-
fications, AccelStack conducts both performance and cost anal-
ysis (Fig. 3). Architecture specifications include microarchi-
tecture parameter settings such as link bandwidth, computing
power, packaging techniques, etc. LLM workload specifications
cover the LLM model structure, input/output sequence lengths,
and batch size.

The performance analysis consists software and hardware
levels. At the software level, AccelStack generates a design
space for LLM inference parallelization strategies, along with
related scheduling and mapping mechanisms. The paralleliza-
tion strategies involve pipeline parallelism (PP), data paral-
lelism (DP), tensor parallelism (TP) with sequence parallelism
(SP), and expert parallelism (EP) [17], [26]. At the hardware
level, internal models are used to model hardware execu-
tions, such as performing matrix multiplication, network-on-
chip (NoC) transmission, etc. The performance analysis is
iterative, continuing until all viable parallelization strategies
are evaluated or a near-optimal candidate is identified within a
predefined time budget.

After completing performance analysis, AccelStack evaluates
costs, including NRE and RE. The NRE cost model supports
both monolithic and chiplet-based designs, while the RE cost

(a) 3D chiplet design (b) 3.5D chiplet design

Fig. 4 Chipletized versions of the architecture are designed
based on Fig. 1. In Fig. 4(b), the plane colored in red denotes
a silicon interposer.

model accounts for 3D integration and planar packaging.
Notably, MCM, CoWoS, and EMIB are termed as planar
packaging in AccelStack as these technologies integrate chips
in horizontal directions [11], [12], [24]. Finally, AccelStack
generates a quality-of-results (QoR) report.

B. Architecture Design
The architecture landscape modeled by AccelStack is depicted
in Fig. 1, representing a monolithic design. From top to bottom,
the architecture involves multiple DRAM dies, a computing
die, and a package substrate. Hybrid bonding is used to
connect neighboring DRAM dies as well as to link DRAM
dies to the computing die. A 2D array of processing elements
(PEs) resides on the computing die, aligned with the DRAM
channels above it. The chip stack is then mounted onto the
package substrate. The areas of both the DRAM dies and the
computing die approach the reticle limit, serving as our straw-
man solution for integrating memories and PEs with hybrid
bonding. For simplicity, details such as NoC is omitted from
the visualization.

Based on Fig. 1, we propose chipletized versions of the
architecture correspondingly (Fig. 4). The monolithic design
is disassembled into four 3D chiplets (Fig. 4(a) and Fig. 4(b)).
Depending on the presence of interposers, these architectures
are referred to as 3D chiplet design and 3.5D chiplet design.
The term “3.5D” arises from the simultaneous adoption of both
3D integration and 2.5D packaging techniques. Each 3D chiplet
contains a subset of the DRAM dies and the computing die
extracted from Fig. 1. Moreover, die-to-die interconnections
implementing UCIe are necessary to achieve functional equiv-
alence with the original monolithic design. Furthermore, the
chipletized design can be packaged using alternative techniques
to achieve different cost-performance trade-offs. Fig. 4(a) em-
ploys a typical MCM, whereas Fig. 4(b) uses CoWoS [11],
[24]. Notably, EMIB can also be applied for 3.5D chiplet design
[12]. The use of silicon interposers or bridges can significantly
enhance chiplet-to-chiplet bandwidth compared to MCM, albeit
at the expense of higher manufacturing costs.

C. Performance Model
We demonstrate the performance model using 3D chiplet
design (Fig. 4(a)). Fig. 5 shows the microarchitecture. In the
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Fig. 5 AccelStack’s modeled microarchitecture for Fig. 4(a).

computing die, four chiplets are interconnected via UCIe, with
UCIe PHYs positioned along the appropriate chiplet shorelines
[23]. Serializer/Deserializer (SerDes) circuits are integrated
into each chiplet, enabling the entire chip to scale-up with
other chips, similar to NVLink-based systems (not shown in
Fig. 5) [6]. Each chiplet has four PEs, and every PE has four
cores. Inside a core, hybrid bonding pillars (viz., Cu-Cu pillars)
connect a DRAM controller and DRAM channels located
above it. Besides, each core incorporates buffers, registers, and
modules like vector core, tensor core, and other functional units
for non-linear mathematics. In contrast, UCIe PHYs are not
required for the monolithic design (Fig. 1). Therefore, all PEs
are communicated through a single NoC.

In the following, we introduce the modeling methods of ma-
trix multiplication (Section III-C1), 3D hybrid-bonded DRAM
(Section III-C2), NoC communication (Section III-C3), and
scale-up system (Section III-C4).

1) Matrix Multiplication

Given a GEMM operation like QK> shown in Equation (1),
AccelStack partitions Q and K> w.r.t. each chiplet and models
the sub-matrix multiplication using the two-level loop tiling
(Fig. 6). For example, the partitioned Q has dimensions m ×
k, while the partitioned K> is with k × n for each chiplet.
In the first level tiling, the two matrices are further divided
into submatrices. These submatrices are transferred between
DRAM and the global buffer (located on the computing die)
on a per-subtile basis. In the second level of tiling, the PE
continues to partition the submatrices into smaller tiles with
dimensions tm×tk and tk×tn. The tensor core accepts inputs
of a predetermined shape and outputs the results. If the input
matrices do not match the required dimensions of the tensor
core, preprocessing steps such as zero padding are applied.
Dashed lines in Fig. 6 show the related data flow. So, the pure
computing latency can be characterized by Equation (2).

tcomp =
m+ tm− 1

tm
· n+ tn− 1

tn
· k + tk − 1

tk

· 2 · (tm+ p− 1) · (tn+ p− 1) · tk
p2 · α · P ,

(2)

where the tensor core is a p×p array of multiplier-accumulator
units, P denotes the number of outputs per cycle, α is the
utilization, and 2 arises from counting both multiplication and
addition in each FMA operation 2.

2Part of memory accesses cannot be overlapped with the computation,
however, we omit the illustration due to the page limit.
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Fig. 6 The two-level loop tiling of the GEMM operation.

2) 3D Hybrid-Bonded DRAM
Unlike HBM, 3D hybrid-bonded DRAM features distributed
controllers and PHYs, which are aligned with PEs. While
canonical HBM access can incur latencies exceeding 300
ns, AccelStack estimates the access latency of 3D hybrid-
bonded DRAM as over 2× faster than that of HBM due to
shorter vertical interconnects [27]. The timing parameters are
validated against vendor data [28]. More details are provided
in Section IV-A1.

3) NoC Communication
Link model is used in NoC communication [29]. Consider a
scenario where a link needs to transfer n bytes of data from
the source to the target. Let the payload size and flit size used
by the NoC transmission protocol be denoted as payload
and flit, respectively. Equation (3) specifies the NoC transfer
latency accordingly.

tcomm =
V

B
+ l + o, V =

⌈
n

payload

⌉
· flit, (3)

where B is the link bandwidth, l is the fixed latency of the
physical layer, and o denotes the additional overhead.

4) Scale-Up Systems
As the scale of LLMs continues to grow from billions to
trillions of parameters, inference must be distributed across
multiple chips. Scale-up system is a distributed inference
system with multiple LLM accelerators and network switches.
It is constructed by enabling chip-level peer-to-peer accesses
with load-store semantics, allowing a single system to behave
as if it were one giant chip. The system consists of multiple
“nodes”, with each node containing a collection of chips
and network switches. AccelStack models scale-up systems
using Clos-based interconnects, a classical data center network
architecture that has been adopted in commercial super nodes.
[30], [31]. Particularly, AccelStack reuses Equation (3) for
inter-rack communication.

D. Cost Model
The main idea of the cost model in AccelStack is to compute
each component of cost separately and then sum them up, as
expressed in Equation (4):

C = CNRE + CRE, (4)

where CNRE and CRE are for NRE and RE cost, respectively.
We first introduce the NRE cost modeling, followed by the RE
cost modeling.

As discussed in Section II-C, NRE costs are one-time
expenses. Modules like tensor cores, DRAM, NoC, etc., are
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designed in parallel and subsequently integrated to form the
monolithic design (Fig. 1) within a chip-integrated product
development (IPD) flow [32]. These costs are challenging to
estimate because they depend on numerous factors, many of
which such as design complexity and the number of person-
months invested, are case-specific. To address this, we de-
velop an NRE cost model using a first-order approximation,
i.e., leveraging silicon area as a cost metric, following Feng et
al. [25]. The NRE cost is proportional to the silicon area of
each module (Equation (5)).

CNRE = (
∑

mi∈chip

αmi
Ami

) + βchipAchip + Cfixed, (5)

where chip represents the monolithic design, Ami
is the silicon

area of the i-th module, and αmi serves as its corresponding
cost coefficient. Similarly, Achip is the total silicon area of the
monolithic design. And βchip accounts for physical design and
verification efforts. Cfixed refers to the requisite fixed costs,
involving EDA tools purchases, IP licensing, and full masks
sets.

The NRE cost of the chiplet design (Fig. 4) is described in
Equation (6):

CNRE =
∑
mi∈M

αmiAmi + (
∑
c∈chip

βcAc + Cfixedc) + Cfixed,

(6)
where M represents the set of modules. Ac, βc, and Cfixedc
denote the area, cost coefficient, and per-chip fixed cost, respec-
tively, for the c-th chiplet of the design. The philosophy behind
the chiplet design’s ability to reduce NRE costs lies in the
design reuse of modules. This is reflected in the comparison of
the first term between Equation (5) and Equation (6). Namely,
the monolithic design typically includes a much larger number
of modules contributing to the NRE cost.

The RE cost is the repetitive expenses incurred during the
mass production stage. It consists of three components: logic
die production, DRAM die production, and packaging. The RE
costs for a logic die and a DRAM die are similar. Taking the
logic die as an example, we use the negative binomial model
to compute the logic die yield (Equation (7)).

Ylogic = Ywafer · (1 +
AlogicD0

α
)−α, (7)

where Ywafer denotes the wafer yield, Alogic represents the
silicon area of the logic die, and D0 is the defect density, which
correlates with the technology node. The number of rectangular
logic dies per circular wafer is approximated by Equation (8)
[33].

Nlogic =
π · (φwafer

2 )2

Alogic
− π · φwafer√

2×Alogic
, (8)

where φwafer is the diameter of a circular wafer. Thus, the RE
cost per logic die can be written as follows:

Clogic = (
Cwafer

Nlogic
+ Ctest)/Ylogic. (9)

In Equation (9), Ctest is the known good die (KGD) test cost.
The RE cost of packaging includes the hybrid bonding

process and planar packaging (Section III-A). In the following
paragraphs, we first present the cost modeling for the hybrid

KGD Hybrid BondingDicing

(a) Die-on-die manufacturing flow

Hybrid BondingDicing KGD

(b) Die-on-wafer manufacturing flow

Hybrid Bonding Dicing KGD

(c) Wafer-on-wafer manufacturing flow

Fig. 7 Overview of the DoD, DoW, and WoW hybrid bonding
process manufacturing flows. DRAM dies are highlighted in
purple, while logic dies are highlighted in yellow.

bonding process and then detail the planar packaging.
The hybrid bonding process features three distinct manu-

facturing flows: die-on-die (DoD), die-on-wafer (DoW), and
wafer-on-wafer (WoW), as summarized in Fig. 7. The three
flows achieve different trade-offs between production effi-
ciency, bonding density and cost. We examine each of these
flows in detail below.

1) Die-on-die

DoD indicates that DRAM chips and logic chips are hybrid-
bonded at the die granularity (Fig. 7(a)). Suppose n dies need
to be hybrid-bonded using this fashion. For a single product, let
CDoD denote the cost per bonding process, and YDoD represent
the yield of each process. The overall cost for each design is
computed using Equation (10):

C3D =

n∑
i=1

Cdiei + (n− 1)CDoD∏n−1
i=1 YDoD

, (10)

where

Cdiei = (
Cwafer

Ndie
+ Ctest + Cmisc.)/Ydie, (11)

and Cmisc. is the additional costs associated with processes
like die thinning and alignment for hybrid bonding. We adapt
Equation (9) with minor revisions to obtain Equation (11).

2) Die-on-wafer

The manufacturing flow of DoW is illustrated in Fig. 7(b).
First, a wafer is diced into individual dies, followed by hybrid
bonding between the selected good die and another wafer.
These two steps are repeated multiple times until the chip
stacking process is complete. Similarly, CDoW and YDoW are
the cost and yield of DoW, respectively. As a result, the overall
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cost for each design is manifested below (Equation (12)).

C3D = (
Clogic wafer + CDoW

Nlogic
+ CDRAMi+1

+ C ′)/(Ylogic · YDoW),

CDRAMi+1 = (
CDRAM wafer + CDRAMi

+ CDoW

NDRAM
+ C ′)/YDoW,

(12)
where C ′ = Ctest + Cmisc., i = 0, 1, ..., n − 2, CDRAM0 is
from Equation (11), and other symbols with subscripts best
explain their own meanings. It is worth noting that Nlogic and
NDRAM are identical since the hybrid bonding process requires
the silicon areas of logic and DRAM dies to be close for precise
die alignment.

3) Wafer-on-wafer
WoW directly hybrid-bonds multiple DRAM wafers to the logic
wafer, as displayed in Fig. 7(c). The overall cost per design is
then calculated using:

C3D = (

n∑
i=1

Cwaferi + (n− 1) · CWoW

min {Nlogic, NDRAM}
+ C ′)/Y ′

Y ′ = Ylogic · YDRAM ·
n−1∏
i=1

YWoW.

(13)

In Equation (13), we reuse symbols discussed earlier. Ad-
ditionally,

∏n−1
i=1 YDRAM is not applied because defects are

predominantly systematic and exhibit negligible randomness.
The most notable difference regarding cost among DoD,

DoW, and WoW lies in the bonding and testing expenses.
In other words, DoW requires higher alignment precision
compared to WoW, while DoD is not yet ready for mass
production [16].

The 2.5D packaging modeled by AccelStack is show in
Equation (14).

Cpackage =Craw package+

Cinterposer · (
1

Y1 · Y n2 · Y3
− 1)+

Csubstrate · (
1

Y3
− 1)+

C3D · (
1

Y n2 · Y3
− 1),

(14)

where Y1 is the yield of the interposer or bridge structure,
Y2 is the bonding yield of chips, Y3 is the bonding yield of
the interposer or bridge structure, and C3D is computed from
Equation (10), Equation (12), or Equation (13), depending on
the selected hybrid bonding manufacturing flow. Since the inter-
poser or bridge used in CoWoS or EMIB is manufactured using
silicon, its cost can be computed similarly to Equation (9). The
yield of the interposer and the number of interposers produced
per wafer can be referenced from Equation (7) and Equation (8)
3. For traditional MCM packaging, no interposer is required.
Therefore, we exclude the term involving Cinterposer and let
Y3 = 1 in Equation (14).

3It is worth noting that some interposers can be made from organics, so
the number of these interposers can be approximated by Norganic interposer =
Apanel/Aorganic interposer, where Apanel is the rectangular raw organic material
for producing these interposers.

TABLE I The LLMs used for experiments.

Model Parameters Vocab size Context
window Layers Attention 1

Llama3 8B/70B/405B 125K 8K 126 MHA & GQA

Gemma2 2B 250K 8K 26 GQA

Qwen2 72B 148K 32K 80 GQA

DeepSeek-v3 671B 126K 128K 61 MLA

1 GPA and MLA are short for group query attention and multi-latent
attention, respectively.

In summary, the RE cost CRE, can be characterized by
Cpackage from Equation (14). And with Equation (4), we can
evaluate the total cost of a design.

IV. EXPERIMENTS

This section presents the experiments. First, we introduce
experimental methodology in Section IV-A. Then, we provide
results and analysis in Section IV-B and Section IV-C. Finally,
we supplement the disucssion in Section IV-D.

A. Experimental Methodology
We detail the implementations, LLM workloads, and baselines
as follows.
1) Implementations
We implement AccelStack in over 13K lines of Python code
based on Calculon [34]. We derive architectural parameters,
calibrate, and validate AccelStack using in-house data. Taking
the monolithic design as an example (Fig. 1), the silicon area
of the compute die is 32 × 25 mm2, while the DRAM die
maintains near-identical dimensions to ensure area matching.
With four DRAM dies stacked, the total memory capacity
reaches 64 GB. The design incorporates 16 PEs interconnected
with a proprietary NoC. It delivers 786 TFLOPS of computing
power at FP8 precision, and 393 TFLOPS at FP16 precision.
Additionally, the 3D hybrid-bonded DRAM provides an ag-
gregate bandwidth of 9.6 TB/s, while the NoC achieves a
bisection bandwidth of 1.5 TB/s at the target frequency. For
the chiplet design, we adopt UCIe as the implementation for
chiplet-to-chiplet communication [23]. The 3.5D chiplet design
with CoWoS (Fig. 4(b)) can achieve a bisection bandwidth of
1.1 TB/s, with edge latency ranging from 2 to 5 ns. The edge
latency includes the latency of the adapter and the physical
layer on TX/RX. The 3.5D chiplet design with EMIB achieves
1.0 TB/s bisection bandwidth. In contrast, the 3D chiplet design
(Fig. 4(a)) delivers a bisection bandwidth of 255.0 GB/s. The
peer-to-peer bandwidth for scaling-up systems is 800 GB/s. The
coefficients used for cost analysis, e.g., wafer price, α and β
from Equation (5), etc., are sourced from ICKnowledge [35].
The bonding price ratios for DoD, DoW, and WoW are set to
4 : 2 : 1, and the hybrid bonding yield is set to 0.95 [36] 4. We
evaluate the cost of 3D-stacked LLM accelerators with a logic
die fabricated in TSMC N5 (15 metal layers) and a DRAM die
implemented in TSMC 16-nm technology. The peak power is
below 400W, which can be dissipated by air cooling [27].

40.95 is a conservative value, and the real yield can be higher than this
value [37], [38].
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Fig. 8 Performance comparison between Calculon A100, H100 and 3D-stacked LLM accelerator designs with specific LLM
parallelization [34]. The top row of bar graphs shows throughput on a logarithmic scale, while the bottom row displays TTFT
latency, also on a log scale. The notation 768/7168 denotes input/output sequence lengths of 768 and 7168 tokens respectively.

2) LLM Workloads
The LLMs evaluated are listed in TABLE I, covering a spec-
trum from popular Llama-series models to cutting-edge open-
source workloads like DeepSeek-v3 [1], [39]. These workloads
are different in scale and model architectural design, offering
a thorough analysis with 3D-stacked LLM accelerator designs.
The evaluation uses production traces, with input sequences of
128 ∼ 1536 tokens and output sequences ranging from 128
to 8192 tokens, representing LLM usage patterns from brief
interactions to complex, long chain-of-thought reasoning tasks
[2], [3], [40]. The batch size is 8, a number chosen in a typical
production LLM service systems [40].
3) Baselines
We employ Calculon as the baseline for two reasons [34].
First, Calculon provides native support for Llama-series models
and has been rigorously validated on NVIDIA’s Selene super-
computer [26]. Second, since AccelStack itself builds upon
Calculon, this choice ensures a fair and consistent compar-
ison basis. We use Calculon to evaluate on both NVIDIA
A100 and H100 platforms. For the A100, we conduct FP16
simulations as A100 lacks FP8 inference support, while for
the H100, we evaluate at FP16 and FP8 precision [5]. To
maintain model accuracy, we implement non-linear operations
(including RoPE and softmax) in FP32 precision [41], [42].
Notably, the 3D-stacked LLM accelerator achieves 39.42% of
the H100’s FP8 compute performance (1979 TFLOPS) [6].
This margin-inclusive estimate stems from conservative silicon
area allocation to the tensor cores, rather than by limitations in
3D integration.

B. Performance Evaluations
Section IV-B1 discusses the comparison with the baseline,
while Section IV-B2 presents additional results.
1) Compare w. Baseline
We compare the monolithic design and the chiplet-based de-
signs (with MCM, CoWoS, and EMIB, respectively) to the
Calculon A100 and H100 via different precisions. Fig. 8
visualizes the results. Since Llama3 405B inference with FP16
precision exceeds available memory capacity, these results are
omitted from Fig. 8.

At FP8 precision, the monolithic design, 3.5D chiplet design
with CoWoS, and the 3D chiplet design achieve 1.86×, 1.80×,
and 1.44× higher throughput, respectively, compared to the
H100 for small outputs (e.g., 128 tokens) with all tested
Llama3 models. When evaluated at FP16 precision against the
A100, the monolithic design shows 3.34× higher throughput,
followed by the 3.5D chiplet designs with CoWoS (3.11×) and
EMIB (3.03×), while the 3D chiplet design maintains 1.78×
advantage. For long-sequence generation (7 ∼ 8K tokens)
under test-time compute scaling [2], [3], the 3D-stacked LLM
accelerator delivers 1.36× greater throughput than the H100 at
FP8 precision. Compared to short sequences, the performance
gains are reduced because Calculon does not account for the
significantly increased KV cache size to a large degree in
the context of long sequences. However, 3D-stacked LLM
accelerators show limitations in time-to-first-token (TTFT) per-
formance, with the monolithic design exhibiting an average
of 2.33× slower TTFT than the H100 at FP8. This perfor-
mance characteristic roots from TTFT’s dependence on raw
computing power, where the monolithic design’s limited FP8
compute capability (as mentioned in Section IV-A3) constrains
its efficiency. We also display the results compared to H100 at
FP16.
2) Compare w. More LLM Workloads
Fig. 9 compares the performance of different 3D-stacked LLM
accelerator designs at FP8 across more LLM workloads. For
short generations, the monolithic design exhibits an average of
narrow performance gap of 7.71% compared to the 3.5D chiplet
design with CoWoS. However, for long-sequence generations,
the monolithic design outperforms by 19.19%. Additionally,
the monolithic design surpasses the EMIB design by 24.73%
in the same case. In contrast, the 3D chiplet design suffers
from limited chiplet-to-chiplet bandwidth due to MCM, which
is 3.0× smaller than that of the monolithic design.

We can summarize key findings from Section IV-B1 and
Section IV-B2. First, 3D-stacked LLM accelerator can ob-
tain higher throughput via enhanced memory bandwidth. The
memory bandwidth of the 3D-stacked LLM accelerator is
approximately 3 ∼ 5× greater than H100. Even though
the compute power of the 3D-stacked LLM accelerator is
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Fig. 9 Performance comparison between three 3D-stacked LLM
accelerator designs with more LLM workloads at FP8.

substantially lower than that of the H100, it can still deliver
up to 2.09× higher throughput at FP8 precision for Llama3
(7.17× over A100 at FP16), especially in scenarios involving
shorter interactions with the LLM. Second, chiplet-to-chiplet
bandwidth can significantly impact performance, particularly
during the generation of long sequences. For short token
generation, the performance gap between the monolithic and
3.5D chiplet designs with CoWoS is within 3.14%, but widens
to 15.15% for long sequences. This suggests that the imple-
mentation of matrix multiplication should optimize chiplet-to-
chiplet communication.

C. Performance-per-Cost Evaluations

We use performance-per-cost (throughput/cost) as a metric to
evaluate the cost-effectiveness of each 3D-stacked LLM accel-
erator design. These designs utilize the DoD, DoW, or WoW
manufacturing flows. The corresponding results are shown in
Fig. 10. The X-axis represents shipment volume of chips, while
the cost includes both NRE and RE costs, calculated using
Equation (4). The performance values are derived from the
Llama3 and DeepSeek-v3 model with different input and output
sequence settings. For the Llama3 model, the 3.5D chiplet
design with EMIB using the WoW manufacturing flow achieves
the highest performance-per-cost for shipment volumes below
140K (i.e., approximately 3500 logic wafers). However, when
shipment volumes exceed this threshold, the monolithic design
manufactured with DoD outperforms other designs. In contrast,
the evaluation results differ for the DeepSeek-v3 model in long
reasoning tasks. For shipment volumes below 30K (around
750 logic wafers), the 3.5D chiplet design with EMIB us-
ing the WoW manufacturing flow again achieves the highest
performance-per-cost. For larger shipment volumes, nontheless,
the monolithic design with DoD becomes more cost-effective,
surpassing other designs by at least 17.32%. Although the 3D
chiplet design reduces RE costs by over 38.09%, its limited
chiplet-to-chiplet bandwidth leads to the lowest performance,
resulting in the worst cost-efficiency among all designs.

A lesson can be learnt from the evaluations. Bandwidth
should be the primary architectural consideration for larger

10K 60K 110K 160K

1

2

Vol.

P
er
f/
C
o
st

Llama3 8B, 512/512

10K 60K 110K 160K
0

0.1

0.2

0.3

Vol.

DeepSeek-v3 671B, 1536/8192

Monolithic (DoD) Monolithic (DoW) Monolithic (WoW)

3D (DoD) 3D (DoW) 3D (WoW)

3.5D w. EMIB (DoD) 3.5D w. EMIB (DoW) 3.5D w. EMIB (WoW)

3.5D w. CoWoS (DoD) 3.5D w. CoWoS (DoW) 3.5D w. CoWoS (WoW)

Fig. 10 Performance-per-cost analysis of 3D-stacked LLM
accelerator designs for DeepSeek-v3.
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Fig. 11 Cost breakdown for monolithic design with WoW.

models, particularly those requiring strong LLM reasoning
capabilities. For shorter interactions with moderately sized
LLMs, the 3.5D chiplet design with EMIB emerges as the
optimal architectural solution.

D. Detailed Cost Analysis
Fig. 11 illustrates the cost distribution for the monolithic design
with WoW under 200K shipment volumes (Fig. 10). The
majority of the cost is attributed to 3D hybrid-bonded DRAM
(40.58%), followed by the logic die cost (23.46%). The 3D
integration accounts for 12.39% of the total cost. In contrast,
for the 3.5D chiplet design with CoWoS, packaging costs can
reach up to 24.14% (not shown in Fig. 11), primarily due to
the high expense of the silicon interposer.

V. CONCLUSIONS

In this paper, we present AccelStack, a cost-driven analysis
framework for 3D-stacked LLM accelerators. Experimental
results reveal that 3D-stacked LLM accelerators, despite uti-
lizing only 39.42% of the computing power of H100’s FP8,
achieve an average throughput up to 2.03× and 7.17× higher
than NVIDIA H100 and A100 simulations, respectively. In the
performance-per-cost evaluations, as shipment volumes exceed
140K, the monolithic design with DoD demonstrates the high-
est cost-efficiency, followed by the 3.5D chiplet design with
EMIB. Furthermore, 3D hybrid-bonded DRAM contributes
40.58% to the total cost of the monolithic design with WoW.
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