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Highlights

= \We propose Bi-Exponent Block Floating-Point (BiE), a novel numerical
representation, tackling the drawbacks of current quantization methods on
LLMs.

= We theoretically investigate the quantization error of the naive Block

Floating-Point and point out the rationale of the quantization error reduction
of BIE.

= An offline thresholding optimization strategy is proposed to enhance the BiE
encoding flow with Bayesian Optimization.

Background
Challenges in LLM Quantization

= Quantization-aware Training (QAT) is not a practical choice for LLM
quantization due to its significant hardware cost. In general, Post-training
Quantization (PTQ) shows less flexibility and obtain worse performance
without retraining and finetuning compared with QAT, but it's the feasible
solution for LLM quantization due to its affordable overhead.

= \WWhen scaling up LLMs beyond 6./B, systematic outliers with large magnitude
will emerge in activations, leading to large quantization errors and accuracy
degradation.

Motivation

Observations For the distribution of activation outliers, it can be seen as two
distribution superposition. When applying the integer quantization, it will waste
lots of bits to keep the precision. Otherwise, they need to conduct some complex
transformation to fuse the two distribution.
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Figure 1. Distribution of input activation in one Linear Layer of OPT-66B model.

The quantization error of BFP has zero mean and variance o which is defined as

) 27 %hm & 2,
o= 2 b
i=1

It is found that the quantization errors mainly depend on Ly, and p~,. When Ly,
IS increasing, the quantization error will be reduced. Moreover, if the probabilities
of taking a larger exponent as the shared exponent are smaller, then the quan-
tization errors of BFP will be reduced. Since the bit length is fixed in the typical
quantization flow, we can only decrease the probabilities of larger shared expo-
nents for quantization error reduction.

Methodology

Bi-Exponent Block Floating-Point Different from the vanilla BFP, the significant
modification is that the BiE format has a bi-shared exponent for each block, e, for
the outlier part and e,, for the normal part, and private 1-bit type t; that indicates
this component belongs to outlier part or normal part. That means the normal
part of the block will use e,, as their shared exponent, and the outlier part will use
e, as the corresponding shared exponent.
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Figure 2. Data format of (a) Block Floating-Point, (b) Bi-Exponent Block Floating-Point

Given a vector X with N elements in FP16, we can obtain its BiE representation
X' as

2enl€o[(—1)%0my), (—=1)*1m], ..., (=1)*N-1m/y,_], 2)
en = max{e; | || < T} eo = max{e; | |z;| > T}, (3)
0 |x;| <T,
t; = il < (4)
1 ‘.CCZ‘ > T,
m;;:mi > > <6n-(1—ti)—|—60-t@'—€i> (5)

where T'is the threshold value in FP16 for distinguishing the normal part and the
outlier part. mg denotes the private mantissa of BiE. e,le, means that if ¢; = 0,
shared exponent of azg IS ey, otherwise it is e,.

Offline Threshold Searching Strategy In order to select the optimal threshold
value for each tensor during inference, we build an efficient offline threshold
searching strategy based on Bayesian Optimization (BO). Firstly, we define the
threshold value search space for all tensors of LLM inference stage (including
weights and activations) and perform search space pruning to reduce the size of
the search space and speed up the convergence.

We adopt the Gaussian Process (GP) as the surrogate model with matérn kernel
function for its robust ability to capture uncertainty quantification during
modeling. For the quantization performance indicator, we simply use the mean
square error (MSE) between the output of the full-precision model and the

quantized model.
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Figure 3. Threshold searching with Bayesian optimization.

Evaluation Results
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Figure 4. p,, distribution of (a) BFP and (b) BIiE on the same activation in OPT-66B model.

Table 1. Comparison with different methods and different quantization configurations for
OPT-models on Wikitext2 (Perplexityl). We highlight our 4-bit BiE results which are
comparable with SmoothQuant W8AS.

Method Config| 6./B 13B  30B 66B

FP16 / 10.64 991 9.33 9.12
SmoothQuant W8A8|11.33 12.79 9.35 Q.62
SmoothQuant W6A6 | 13.16 13./5 82.54 3383.21

BFP WA4A4 |1 11.22 11.15 990 14.16

BiE (Ours) W4A4|10.93 10.39 9.37 9.82

BFP W3A3 | 14.61 13.85 13.83 13/.72

BiE (Ours) W3A3|12.10 11.13 10.01 3241

Table 2. PTQ performances using different methods on LLaMA-2 models for various tasks.
Average? is the average accuracy among various tasks. Perplexity] is for WikiText2. SQ
represents SmoothQuant. We highlight our 4-bit BIE results.

Averaget Perplexity]

Comg | -5 138 708 | 78 138 70B
FP16 /| 7616 77.50 81.62] 6.73 595 4.51
SQ WB8A8|75.12 7747 80.35| 6.93 594 456
SQ  W6AS | 66.07 6751 7696|1038 828 5.73
BFP WA4A4 | 68.65 71.20 80.24| 7.69 6.74 4.69
BIE W4A4 | 72.83 75.90 80.21| 7.00 6.16 4.61
BFP W3A3 | 42.28 43.52 7/3.05|20.86 14.70 5.78
BIE W3A3|50.00 6325 77.24| 892 786 521

Conclusion

= BiE can be naturally adapted to the numerical distribution characteristics of
the LLMs and achieve negligible loss in 4-bit activations and weights
quantization.

= BiE can balance precision and hardware efficiency.

= BiE is not limited to LLM quantization, it can be used in any model with any
distribution.
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