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Abstract

Microarchitecture determines the implementation of a micro-
processor. Designing a microarchitecture to achieve better
performance, power, and area (PPA) trade-off has been in-
creasingly difficult. Previous data-driven methodologies hold
inappropriate assumptions and lack more tightly coupling
with expert knowledge. This paper proposes a novel rein-
forcement learning-based (RL) solution that addresses these
limitations. With the integration of microarchitecture scal-
ing graph, PPA preference space embedding, and proposed
lightweight environment in RL, experiments using commer-
cial electronic design automation (EDA) tools show that our
method achieves an average PPA trade-off improvement of
16.03% than previous state-of-the-art approaches with 4.07 x
higher efficiency. The solution qualities outperform human
implementations by at most 2.03x in the PPA trade-off.

Introduction

The instruction set architecture (ISA) is the interface be-
tween software and hardware. RISC-V, an open standard
ISA, has garnered significant attention from both academia
and industry nowadays. The microarchitecture determines
how a particular microprocessor is implemented given an
ISA. It sets the cornerstone for a microprocessor’s overarch-
ing design points: performance, power, and area (PPA).

Nevertheless, it is challenging to design a microarchitec-
ture efficiently to achieve pre-determined PPA design goals
for target workloads (computation-bound or memory-bound
programs) with manual efforts. Computer architects often
rely on design space exploration (DSE) to find appropriate
solutions. Those solutions can maximize performance and
minimize power and area for target workloads. DSE is an it-
erative, trial-and-error, and non-trivial procedure due to two
factors. First, the design space is enormous and complicated.
It comes from the high complexity of a microarchitecture,
such as shown in Figure 1, which includes different compo-
nents responsible for implementing specific functions (Chen
et al. 2020; Grayson et al. 2020). Second, evaluating the PPA
values of a single microarchitecture design requires an ex-
tremely high runtime. Thus, it is a fond dream for architects
to iterate the design space and retrieve optimal solutions.
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Figure 1: Instructions fetched from I-cache are sent to func-
tional units (e.g., ALU, LD/ST, etc.) for execution. Regis-
ter files (RF) save temporary data. Reorder buffer (ROB)
achieves precise interrupts (Smith and Pleszkun 1988).
Components are highlighted with diverse colors, and the
same color denotes a similar function.

Previous methodologies have been proposed. In industry,
architects’ expert knowledge is a heuristic to guide the DSE.
However, it is a concern that personal bias can lead to sub-
optimal solutions. In academia, both analytical and data-
driven methods have been proposed. The analytical meth-
ods conduct interpretable equations to describe relations be-
tween microarchitectures and PPA values for various work-
loads. Karkhanis and Smith (2007) adopted interval anal-
ysis to construct such equations. However, the analytical
model requires much expert knowledge, and is unscalable
for newly-emerged microprocessors. Data-driven methods
are utilized accordingly when we lack accesses to experts.
The microarchitecture is viewed as a black box. Chen et al.
(2014) employed a ranking model. Li et al. (2016) applied
statistical sampling and AdaBoost learning. Bai et al. (2021;
2023b) proposed a Bayesian optimization-based framework.
Such data-driven methods generally outperform analytical
methods owing to many advanced machine-learning tech-
niques (Li et al. 2022; Yu et al. 2023). However, they are
not free of criticism. Blindly exploring microarchitectures
(purely driven by the algorithm rather than tightly coupled
with expertise) can be naive since architects already know
the characteristics of most designs (Bai et al. 2023a).

In this paper, we follow the approach of previous data-
driven methods but with key distinctions: our method re-
moves prior unrealistic assumptions, and our solution is
deeply integrated with expert knowledge. Previous data-



driven methods often assume a positive correlation between
the PPA difference and feature embeddings of microarchi-
tectures. On the contrary, the assumption does not hold in
general. Our RL solution is free of such assumptions. More-
over, using the microarchitecture scaling graph, we tightly
embed the expert knowledge to formulate the Markov deci-
sion process (MDP). The scaling graph encodes the sequen-
tial decision precedences of the microarchitecture compo-
nents. Accordingly, we propose a multi-objective RL frame-
work based on the MDP. The framework enables the auto-
mated RISC-V microarchitecture design with a single agent
for different PPA design preferences. It is worth noting that
our solution focuses on RISC-V to promote chip agile de-
sign methodology (Lee et al. 2016). Our main contributions
are as follows:

1) We propose an MDP model with the microarchitecture
scaling graph, embracing architects’ expertise and providing
strong prior knowledge for our agent.

2) We embed the PPA design preferences into RL and
re-formulate the multi-objective optimization to a unified
dynamic-weighted reward signal. It is helpful since this fea-
ture allows agents to explore microarchitectures for different
PPA design preferences online.

3) We propose a lightweight environment to accelerate the
learning process. With calibrated PPA models, we accelerate
the learning process by over 100x times compared to using
EDA tools only (Zhai et al. 2021).

4) Our experiments use representative RISC-V micropro-
cessors and evaluate with commercial EDA tools at 7-nm
technology. Results show that our method can achieve an
average of 16.03% PPA trade-off improvement over prior
state-of-the-art approaches with 4.07x higher efficiency.
And the solution qualities outperform human implementa-
tions by at most 2.03 x in the PPA trade-off.

Preliminary

RISC-V Microprocessors. Unlike other ISAs (ARM, x86,
etc.), RISC-V is free for commercial usage. The free license
drives the appearance of many RISC-V microprocessors,
some of which are representatives. Rocket (Asanovié et al.
2016) is a six-stage pipeline in-order microprocessor. Son-
icBOOM (Zhao et al. 2020) is a ten-stage pipeline out-of-
order design. XiangShan (Xu et al. 2022) features advanced
microarchitecture optimizations. Xuantie-910 (Chen et al.
2020) is an open-source implementation from the industry.

Microarchitecture PPA Modeling. Computer architects
use various tools to evaluate PPA values of microarchitec-
ture designs. When the register-transfer-level design (RTL)
! is available, EDA tools are necessary to report PPA val-
ues. The PPA evaluation flow with EDA tools includes steps
like logic synthesis, placement and routing, netlist simula-
tion, etc. When the RTL implementation is unavailable, pre-
RTL simulation infrastructures like microprocessor perfor-
mance simulators are used to report first-hand PPA values.
Compared to EDA tools, pre-RTL simulation infrastructures

IRegister-transfer level design (RTL) is a description of hard-
ware implementations using programming languages such as Ver-
ilog and VHDL.
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Figure 2: An overview of the microarchitecture scaling
graph. Colors are matched with Figure 1.

are less accurate. In this paper, we propose a lightweight
RL environment to couple the pre-RTL simulation infras-
tructures with EDA tools, i.e., improve the modeling ac-
curacy of pre-RTL simulation infrastructures without sac-
rificing efficiency. Specifically, we leverage GEMS (Binkert
et al. 2011), a performance simulator, and McPAT (Li et al.
2009) as our fundamental PPA modeling tools.
Microarchitecture Scaling Graph. Since the microarchi-
tecture scaling graph first appeared (Eyerman et al. 2009),
computer architects relied on it to study mechanistic mi-
croexecutions (Carlson, Heirman, and Eeckhout 2011; Carl-
son et al. 2014).

The microarchitecture scaling graph is directed, elucidat-
ing the scaling precedence constraints between components,
as shown in Figure 2. Nodes are components, and directed
edges are scaling precedences. According to Figure 2, an in-
terplay exists between the pipeline width and issue width.
The pipeline width and issue width determine the ROB size,
while the ROB size decides the issue buffer size, load/store
(LD/ST) buffer size, etc. The scaling graph is derived from
extensive simulations and architects’ discussions. The rela-
tions unfolded by the scaling graph are general for main-
stream microarchitectures due to a widely applied typical
von Neumann architecture.

Problem Formulation. Given the microarchitecture design
space, the problem is to find the solution to Equation (1)
within a limited time budget.

Qé%ﬂperf(s)v Power(s), —Area(s)], (1)
where D is an n-dimensional microarchitecture design
space, and s is a vector to parameterize a design (feature
embedding of a microarchitecture).

Methodology
Overview

We propose an RL solution framework with customized
MDP (S, A, P, R) formulation, as shown in Figure 3. The
state space S is the design space. The action space A is the
candidate set of components’ types or corresponding hard-
ware resources listed in Table 1. The components’ types
refer to a type of branch predictor, cache replacement pol-
icy, etc., and hardware resources specify the queue, buffer,
or stack sizes. P is the state transition. The reward space
R involves all the vectorized PPA values. In the training,
the agent learns to generate appropriate partial components
stepwise given sampled PPA preference vectors to formu-
late the complete microarchitecture. In the DSE, the trained
agent produces solutions w.r.t. a fixed PPA preference spec-
ified by architects.
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Figure 3: Overview of our RL framework. s denotes a state, a is an action, and r represents an immediate vectorized reward.

The PPA preference space is incorporated into our frame-
work since the microarchitecture design is faced with di-
verse workloads. High-performance computing scenarios
emphasize performance more, while embedded applica-
tions push pressure on high power efficiency and area effi-
ciency. Different PPA preference vectors denote architects’
design goals, and our single agent benefits from the PPA
preference-aware DSE with the proposed framework.

Combine RL w. Microarchitecture Scaling Graph

We combine RL with the microarchitecture scaling graph
via a practical episode design. In each step of an episode, the
agent produces partial components. The episode ends until a
complete microarchitecture is formulated.

The state of a microarchitecture is encoded as a vector
with each element denoting a selection of a particular com-
ponent parameter. Elements are masked for undefined com-
ponents and masks are removed progressively as more com-
ponents are determined by advancing the step. The action
space is correlated with the step since different components
relate to distinct action candidates. Each step determines one
component. Once the complete microarchitecture is gener-
ated, we adopt the lightweight environment to evaluate the
reward r(Perf, Power, Area). Otherwise, the reward is zero.
The precedence of decision-making among components fol-
lows the scaling graph, as the graph unveils cause-and-effect
relations between different components. Another notewor-
thy point is that the action space is changed in each step,
leading to the output misalignment for a single agent. We
apply a typical engineering trick: the normalization of ac-
tion probability to deal with it (Schrittwieser et al. 2020).

The rationale for the episode design is that we place
strong prior knowledge for the agent. The prior knowledge
is derived from the scaling graph, revealing the components’
decision priority. For example, the pipeline width deter-
mines the maximal instructions fetched simultaneously. And
the structure of the issue unit is then decided based on the
width. Because the issue unit adjusts instruction issue rates
based on how many instructions are fetched by the front-
end and buffers those instructions for the back-end (see Fig-
ure 1). Hence, our episode design explicitly provides such
domain knowledge for the agent. As shown in Figure 3, once
a PPA preference and the pipeline width are specified, the
agent first determines the appropriate issue queue sizes, with
the following determinations involving fetch queue size,
type of a branch predictor, etc., sequentially. Although rela-
tions between some components are not uncovered from the
scaling graph (e.g., the issue buffer size and the number of
physical registers indicated in Figure 2), we determine their
structures in a fixed order within an episode.

Dynamic-weighted Reward

Since a single agent cannot handle multiple objectives si-
multaneously, a weighted summation is applied in the re-
ward computation, as listed in Equation (2).

r = r(Perf, Power, Area) - (o, 8,7) " )

where «, 3, and 7 are weights controlling the PPA trade-
off. We align the reward optimization with our objectives
via normalizing Perf, Power, and Area, i.e., maximizing the
reward equals maximizing the performance, and minimizing
the power and area.

However, weights can be changed as architects’ PPA de-
sign goals vary. A transparent limitation is that the agent
needs to be retrained once the weights are changed. Accord-
ingly, an online adaptation for changed weights is necessary.
That is, the single agent can handle the changing coefficients
«, (3, and «y without learning from scratch. It motivates us to
embed the PPA preference space into the framework.

Embed Preference Space into RL

The PPA preference space ® is the set of preference vec-
tors ¢ = (a, 3,7y), which balance the PPA values in various
degrees and satisfy the simplex constraints, i.e., Vi, ¢; >
0, >, ¢i = 1. We embed @ into RL, making the agent learn
the convex coverage set (CCS) w.r.t. Equation (2) (Roijers,
Whiteson, and Oliehoek 2015; Roijers and Whiteson 2017).
Hence, a single agent can maximize r without retraining or
fine-tuning in the DSE when ¢ is changed.

CCS is the convex subset of the Pareto frontier, as formu-
lated in Equation (3).

CCS = {r € PF(R) |
Jpec®,rp’ >r'¢p" V' € PF(R)},

where PF(R) is the Pareto frontier of R, and PF(R) =
{r | #r' = »,¥r,Vr' € R} %. Pareto frontier is a set of mi-
croarchitectures whose PPA values represent the best trade-
off. Equation (3) indicates that optimal solutions can attain
the maximal 7 (see Equation (2)) for a specific ¢.

To facilitate the agent’s learning of the CCS during train-
ing, a generalized Bellman optimality equality is applied
(Yang, Sun, and Narasimhan 2019). The generalized equal-
ity is an extension from the single objective Bellman opti-
mality. The main idea is to optimize the policy towards max-
imal r given a particular ¢, as shown in Equation (4).

Q(S, a, ¢) = ?“(S7CL) + C]ES’N’P(-\S,G,)T(Q(Sla a, ¢))a
TQ(sa,¢) =arg max Q(s,d,¢)p", &

Q dcadce

3)

2y’ > p denotes that each element of 7’ is better than .
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Figure 4: Optimization procedure with Equation (4).

where ( is a discount factor. Q(s, a, ¢) is the state-action
vector when s is the state, a is the action, and ¢ is the prefer-
ence vector. T (Q(s, a, ¢)) is Q, which attains the maximal
r via traversing the action space A, and sampled ¢’ 3.

Figure 4 details an example optimization with Equa-
tion (4) in the performance-power space, given ¢. Before
applying Equation (4), we sample multiple different ¢»; and
2, holding an insight that the agent can learn to generate
other policies according to varied preferences. At state s,
the agent is faced with actions aq and a-. Under ¢; and ¢o,
four rewards are highlighted with blue and red colors. Ul-
timately, the policy is optimized with Q(s, a2, ¢) since it
achieves the maximal reward among all rewards.

Our RL framework adopts the asynchronous advantage
actor-critic (A3C) (Mnih, Badia et al. 2016) in favor of high
training efficiency over PPO (Schulman et al. 2017) or SAC
(Haarnoja et al. 2018). The actor is a policy network used to
generate an action. The critic evaluates the complete state to
determine whether the optimization becomes better or worse
than expected. The gradients of the actor 8,, is listed in Equa-
tion (5).

vea =Kk Vo, H(ﬂ'(sﬁ 0a))+

EﬁNT([Z v@a log e, (a/t | St)A(Sta ag, ¢/)¢T]a

t=0

&)
where A(sy,ar, ') = Q(st,at, @) — V (s, @) is the ad-
vantage function featuring relatively low variance, £ is a tra-
jectory following the policy 7, and 68, denotes parameters
of the actor. The entropy of the policy 7 is incorporated in
optimizing the actor (H (7 (s¢; 6,,)). It can prevent the agent
from always selecting the currently found best action. A co-
efficient s controls the strength of entropy regularization.
For the critic, Equation (6) gives the loss function with an
L2 normalization applied between two state-action vectors.

Le =pll(Q" = Q(s,a,¢':0.))¢" |5+
(1 - p)HQ* - Q(Sva7¢/;90)”%7

where p is a coefficient to balance these two terms, 8. de-
notes parameters of the critic, and Q* is obtained from

(6)

3The size of A at each step is small, allowing us to traverse ef-
ficiently. However, since ¢ is an uncountable set, we sample mul-
tiple ¢ in the training and compute 7 (Q(s’, a, ¢)) based on these
samples otherwise.

Equation (4). The first term in Equation (6) enforces opti-
mizing the critic network w.r.t. the maximal reward shown
in Equation (2). The n-step TD errors (Peng and Williams
1994) is leveraged. However, Equation (5) requires many
transition samples to give a relatively accurate gradients ap-
proximation for a steady and stable improvement. We em-
ploy the generalized advantage estimator (GAE) to handle it
(Schulman et al. 2016), as listed in Equation (7).

N
Ty = Z(AC)Nin(rt+k+CVt+l+k(3tv @)~ Visr(s1, ),

n=0
(N
where A is a coefficient controlling the strength of the
exponential-weighted average.

Conditioned Actor-Critic Network

The input of our actor and critic networks is the concate-
nation of state and corresponding preference vectors. The
preference vectors serve as conditional inputs to the actor
and critic networks. Both networks are multilayer percep-
trons with leaky ReL.U as the activation function. The intu-
ition of the concatenation is to support the online adaptation
of changed preferences for agents. Hence, many policies are
optimized on-the-fly (Abels et al. 2019).

Accelerate Learning via Lightweight Environment

Training the agent with pre-RTL simulation infrastructures
as the RL environment is inaccurate while using EDA tools
in the loop is inefficient. So, we propose a “lightweight” en-
vironment to combine the merits of both modeling flows,
which the “lightweight” refers to that our environment can
achieve a speed-up of 100x ~ 110x in PPA estimation
compared to using EDA tools in the training loop.

The lightweight environment is based on the calibration,
which is set up before the RL training (Zhai et al. 2021). We
leverage the EDA flow in the calibration as a PPA ground
truths generation flow. And we adopt the pre-RTL simula-
tion infrastructures as feature extraction flow. The extracted
features encode knowledge to microarchitectures and work-
loads, e.g., queue, buffer, or stacks’ number of reads and
writes, number of load and store instructions, etc. Super-
vised learning is then applied to train PPA black-box models
such as XGBoost (Chen and Guestrin 2016) separately, with
the loss function defined in Equation (8).

L=|f(s e.p) = yul3, 8)
where f is a black-box model. s, e, and p are inputs of
the model, denoting state, cycle accurate simulation statis-
tics, and other PPA-related features (e.g., leakage and sub-
threshold power, etc.), respectively. yg is the ground truth.
Figure 5 provides an overview of the calibration flow. In the
RL training and DSE, a microarchitecture is initially eval-
uated using pre-RTL simulation infrastructures and is cali-
brated with trained PPA black-box models. Furthermore, we
duplicate the environment into multiple instances, permit-
ting higher training parallelism.
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Predict PPA Values

Why RL?

Previous data-driven methods apply statistical analysis (Li
et al. 2016), Gaussian process (Bai et al. 2021), etc. How-
ever, a limitation can be observed. Most previous methods
attribute the degree of PPA difference to the distance be-
tween feature embeddings of microarchitectures. For exam-
ple, the Gaussian process assumes the existence of such re-
lations (Bai et al. 2021; Williams and Rasmussen 2006). On
the contrary, we find the relation does not hold generally,
and demonstrate it with an anti-example shown in Figure 6.
M1 is the baseline microarchitecture. M2 changes the branch
predictor (Seznec and Michaud 2006), M3 reduces the de-
code width, and M4 decreases branch speculation tags. t-
SNE (Van der Maaten and Hinton 2008) is utilized to visu-
alize the embedding distances to M1. Notwithstanding that
M2 and M3 have the same distance to M1, they incur differ-
ent PPA value gaps to M1. M3 has 8.54%, 3.00%, and 5.09%
smaller PPA values than M1. M2 demonstrates a more sub-
stantial difference, i.e., 13.09%, 23.75%, and 14.48% lower
PPA values than M1. The embedding distance between M1
and M2 is closer than that between M1 and M4. However,
compared with M2, M4’s PPA values are even closer to M1,
i.e., M1 outperforms IPC by 0.36% *, dissipating 3.67%
more power and 1.39% larger area than M4.

Our RL solution can remove unrealistic assumptions.
Thus, it alleviates the limitations of prior data-driven meth-
ods. However, RL might be one of many remedies while our
MDP formulation can capture the structure of the problem.

Experiments
RISC-V Microarchitecture Design Space

We evaluate the proposed RL framework with representative
in-order and out-of-order RISC-V microprocessors, Rocket
(Asanovi¢ et al. 2016) and different scales of SonicBOOM
(Zhao et al. 2020) (categorized by “pipelineWidth”), as
shown in Table 1. We include cache structures, branch pre-
dictors, functional units, load/store units, issue units, etc., in
the design space. The Rocket and SonicBOOM design space
size is 5.18 x 10% and 1.02 x 10'6, respectively.

*Instruction per cycle (IPC) is a performance metric.
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Figure 6: Four SonicBOOM microarchitectures’ PPA values
of six benchmarks reported from EDA tools, and the visual-
ization of embeddings distances.

Experimental Settings & Baselines

All experiments are conducted on 80 Quad Intel(R) Xeon(R)
CPU E7-4820 V3 cores with a 1 TB main memory. The
PPA values reported in the main results are from com-
mercial EDA tools. Specifically, the performance, power,
and area values are obtained from Synopsys VCS M-
2017.03, Synopsys PrimeTime PX R-2020.09-SP1, and Ca-
dence Genus 18.12-e012_1 with 7-nm technology (Clark
et al. 2016). Due to the page limit, we mainly show the
results of SonicBOOM for some experiments, specifically
for the Large SonicBOOM. Code is publicly available at
https://github.com/baichen318/rl-explorer.

The coefficient x in Equation (5) is set as 1, p in Equa-
tion (6) is 0.5, A in Equation (7) is 0.95 and the discount
factor ¢ in Equation (7) is 0.99. Adam optimizer is used,
and the initial learning rate is 0.001.

We compare our method with current state-of-the-arts,
i.e., Bayesian optimization-based (Bai et al. 2021) (IC-
CAD’21), Adaboost-based (Li et al. 2016) (DAC’16),
ranking-based (Chen et al. 2014) (ISCA’14), and human ef-
forts (Asanovi¢ et al. 2016; Zhao et al. 2020). The base-
lines are implemented according to the original papers. We
use towers, vvadd, spmv from official RISC-V tests as
workloads in the DSE. Results on more workloads are also
elucidated. To compare the efficiency of algorithms fairly, all
baselines adopt the lightweight environment, but searched
solutions are re-evaluated with EDA tools.

Accuracy of Lightweight PPA Models

We use the Kendall 7 and the mean absolute percentage error
(MAPE) to measure the accuracy of lightweight PPA mod-
els. The higher the Kendall 7 and the lower the MAPE, the
more accurate the lightweight PPA models are.

Figure 7 lists the accuracy of lightweight PPA XGBoost
models and the ratio of microarchitectures in the training
data set leveraged in the calibration flow. In the first row, the



Design | Component | Parameters | Candidate
Branch RAS ' 0:12:3*%
dictor BTB.nEntr}es 0:56:14
pre BHTnEntries | 0: 1024 : 256
I-cache nWays 1,2,4
nTLBWays 4:32:4
Rocket Functional FPU 1,2
it mulDiv 1,2,3
VM 1,2
nSets 32,64
nWays 1,24
D-cache nTLBWays 1:32:4
nMSHRs 1,2,3
Branch Type 1,2,3
predictor maxBrCount 4:22:2
fetchBufferEntries 6:46:2
IFU fetchWidth 4,8
ftq.nEntries 12:64:4
pipelineWidth 1:5:1
Small ROB 24:160:4
Medium PRE intPhysRegisters 40:176: 8
Large numFpPRF 34:132:6
Mega fpPhysRegisters 1:5:1
Giga ISU numEntries 6:52:2
SonicBOOM dispatchWidth 1:5:1
LDQ 6:32:2
LSU STQ 6:36:2
nWays 4,8
I-cache nSets 32,64
nWays 4,8
D-cache nSets 64,128
nMSHRs 2:10:2

* The values are start number:end number:stride, eg.,0:12: 3 de-
notes the entries of RAS can be 0, 3, 6, etc., until 12.

Table 1: RISC-V Microarchitecture Design Space
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Figure 7: The accuracy of lightweight PPA models, and
MAPE and Kendall 7 curves w.r.t. the calibration data size.

blue line “GT = Pred” visualizes the error when PPA mod-
els are trained using the entire training data set. The Kendall
7 are 0.93, 0.95, and 0.94 for PPA models, respectively, in-
dicating acceptable accuracy when using these models in
the RL framework. The second row demonstrates how much
data the calibration flow needs to receive acceptably accu-
rate PPA models. By leveraging around 800 ~ 900 Son-
icBOOM microarchitecture designs, the Kendall 7 for PPA
modeling results can achieve higher than 0.92.
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Figure 8: RL training status of Large SonicBOOM.

RL Training

Figure 8 displays the RL training metric curves for Large
SonicBOOM, which include PPA values, and specific values
of PPA preference vectors. Different PPA preference vec-
tors are sampled throughout the training, resulting in per-
turbed PPA values received in each episode. IPC curves are
increased gradually and flattened eventually as trained with
more episodes. Power and area values are changing in re-
sponse to divergent PPA preference vectors.

Comparison w. Human Efforts & Prior Arts

Three metrics: Perf/Power, Perf/Area, and (Perf x
Perf) /(Power x Area) are used in the experiments.
These metrics measure how much performance per watt,
performance per area, and PPA trade-off a micropro-
cessor can attain. The higher the wvalues, the bet-
ter the power/area efficiency of the microprocessor. In
the DSE, we use predetermined PPA preference vec-
tors for different scales of SonicBOOM. The pref-
erence vectors are (1/12,1/12,10/12), (1/7,1/7,5/7),
(1/3,1/3,1/3), (5/7,1/7,1/7), and (10/12,1/12,1/12)
for Small, Medium, Large, Mega, and Giga SonicBOOM,
respectively. We use (1/3,1/3,1/3) for Rocket. These pref-
erence vectors are used in the RL to identify optimal de-
signs and to calculate scalar rewards for solutions obtained
through the baseline algorithms. We facilitate fair compar-
isons between different methodologies by comparing the so-
lutions that yield the maximal reward among our method and
the baseline algorithms in the abovementioned three met-
rics. The rationale behind setting such preference vectors is
to emphasize specific design priorities based on the scale of
the microprocessors. We prioritize higher power and area ef-
ficiency for small microprocessors, as reflected in the prefer-
ence vectors. On the other hand, for larger microprocessors,
we emphasize higher performance. For the middle scale of
SonicBOOM, i.e., Large SonicBOOM, we aim for a higher
degree of balance among the PPA values.

Table 2 lists the results. The relative runtime for explo-
ration is also reported. Explored Rocket and nearly all scales
of SonicBOOM by our method are better than prior works
and human efforts. In summary, our solutions achieve an
average of 24.64%, 17.13%, and 6.33% than ICCAD’21,
DAC’16, and ISCA’14 in PPA trade-off, respectively. More-
over, the RL solutions outperform human efforts up to 2.03 x
better in (Perf x Perf) /(Power x Area). And our method can



Design Method Perf(ﬁ;rgance Power Arez; Perf / Powe'r Perf / Areé (Perf x Perf) / (Pow.er X Area) Runtime
mW  mm Val. Ratio Val. Ratio Val. Ratio
Human Efforts 0.734 2.700  0.908 | 0.272 —1 0.808 — 0.220 — —
ISCA’14 0.816 2.300 0.794 | 0.355 1.305x | 1.027 1.271x | 0.364 1.659x 8.611x
Rocket DAC’16 0.549 1.800 0.534 | 0.305 1.121x | 1.028 1.272x | 0.313 1.426 x 5.896 x
ICCAD’21 0.728 2.100 0.745 | 0.347 1.275x | 0.977 1.209x | 0.339 1.542 % 1.501x
Ours 0.728 2.300 0.576 | 0.316 1.164x | 1.263 1.563x | 0.400 1.820x 1.000
Human Efforts 0.784 20.300 1.505 | 0.039 — 0.521 - 0.020 — —
ISCA’14 0.820 15.000 1.284 | 0.055 1.415x | 0.638 1.226x | 0.035 1.735% 5.803 x
Sonis(jgeglOM DAC’16 0.808 14.700 1.251 | 0.055 1.423x | 0.645 1.239x | 0.035 1.764x 4.792x
ICCAD’21 0.847 20.000 1.503 | 0.042 1.097x | 0.564 1.082x | 0.024 1.187x 1.305x
Ours 0.840 15.200 1.254 | 0.055 1.432x | 0.670 1.287x | 0.037 1.843 x 1.000
Human Efforts 1.194 25.600 1.933 | 0.047 — 0.618 — 0.029 — —
. ISCA’14 1.236 19.600 1.624 | 0.063 1.353x | 0.761 1.233x | 0.048 1.667 x 5.688x
Soﬁde‘gSM DAC’16 1.376 25400 1.925 | 0.054 1.161x | 0.715 1.157x | 0.039 1.344x 4.697x
ICCAD’21 1.445 27.100 2.158 | 0.053 1.144x | 0.670 1.084x | 0.036 1.240x 1.279x%
Ours 1.287 20.600 1.735 | 0.062 1.340x | 0.742 1.201x | 0.046 1.610x 1.000
Human Efforts 1.487 44.600 3.206 | 0.033 — 0.464 — 0.015 — —
ISCA’14 1.490 30.900 2.542 | 0.048 1.446x | 0.586 1.263x | 0.028 1.827x 5.892x
Son]i_(‘:aégOeOM DAC’16 1.492 32.400 2.674 | 0.046 1.381x | 0.558 1.202x | 0.026 1.661x 4.865x
ICCAD’21 1.916 40.900 3.672 | 0.047 1.405x | 0.522 1.125x | 0.024 1.581x 1.325%
Ours 1.588 31.400 2.564 | 0.051 1.517x | 0.619 1.335x | 0.031 2.025x 1.000
Human Efforts 1.950 57.800 4.806 | 0.034 — 0.406 — 0.014 - —
ISCA’14 2.496 56.600 5.368 | 0.044 1.307x | 0.465 1.146x | 0.021 1.498 x 5.544 x
Son]i\(/:lggOaOM DAC’16 2.500 56.200 5.380 | 0.044 1.318x | 0.465 1.145x | 0.021 1.510x 4.578 %
ICCAD’21 2.482 60.700 4.701 | 0.041 1.212x | 0.528 1.301x | 0.022 1.578 1.247x
Ours 2.523 55.700 5.251 | 0.045 1.343x | 0.480 1.184x | 0.022 1.590 x 1.000
Human Efforts 1.872 71.600 5.069 | 0.026 — 0.369 - 0.010 — —
. ISCA’14 2.253 62.200 6.001 | 0.036 1.386x | 0.375 1.017x | 0.014 1.409 % 5.632 %
SoniSIIBgSOM DAC’16 2.252 77.300 5.600 | 0.029 1.115x | 0.402 1.089x | 0.012 1.214x 4.651x
ICCAD’21 2.265 74.500 5.865 | 0.030 1.163x | 0.386 1.046x | 0.012 1.216x 1.267x
Ours 2.269 59.500 5.746 | 0.038 1.459x | 0.395 1.070x | 0.015 1.560 x 1.000

! «“_» denotes not applicable.

Table 2: Comparison with Human Efforts and Prior Arts
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Figure 9: Analysis w. more workloads.

find those solutions using an average of 4130.89 seconds,
i.e., 4.07x higher efficiency than baselines. For Medium
SonicBOOM, power/area efficiency is comparable since our
solution trades 4.13% more performance than ISCA’14.

Analysis w. More Workloads

We analyze explored microarchitectures with more work-
loads to study how RL solutions outperform other methods
and human implementations. Figure 9 lists related results for
Large SonicBOOM. The areas for human implementations,
ISCA’14, DAC’16,ICCAD’21 and ours are 3.21, 2.54, 2.67,
3.67, and 2.56 in mm?, respectively. While human imple-

mentations and the [CCAD’21 solution achieve higher per-
formance on most workloads, they require more area and
dissipate more power, resulting in a lower performance per
watt or PPA trade-off. Compared to human implementa-
tions, our solution demonstrates significant improvements
in three metrics by factors of 1.35%, 1.23x, and 1.66x, re-
spectively. Additionally, it outperforms the baselines with
average improvements of 7.74%, 12.47%, and 21.15% in the
corresponding metric values. Our solution adopts a Gshare
branch predictor, 16KB I-cache, and 32KB D-cache. The
PPA trade-off is further enhanced by increasing integer is-
sue queue sizes and removing redundant resources. Our so-
lution achieves a superior PPA trade-off by selecting a more
suitable branch predictor, cache structures, and a balanced
allocation of resources for queues, stacks, and buffers.

Conclusion

We propose an RL solution to deal with automated RISC-
V microarchitecture design. Our solution removes unreal-
istic assumptions and is tightly coupled with expert knowl-
edge. Experiments show that our method on RISC-V Rocket
and SonicBOOM achieves an average of 16.03% PPA trade-
off improvement over prior state-of-the-art approaches with
4.07x higher efficiency.
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