

EBRUARY 20-27, 2024 | VANCOUVER, CANADA ANCOUVER CONVENTION CENTRE – WEST BUILDING

Towards Automated RISC-V Microarchitecture Design with Reinforcement Learning

Chen Bai¹, Jianwang Zhai², Yuzhe Ma³, Bei Yu¹, Martin D.F. Wong⁴

¹The Chinese University of Hong Kong
²Beijing University of Posts and Telecommunications
³The Hong Kong University of Science and Technology (Guangzhou)
⁴Hong Kong Baptist University

January 11, 2024

1 Introduction

2 Preliminaries

3 Reinforcement Learning Methodology

4 Experiments

5 Conclusion & Discussions

Introduction

Problem Formulation

Given the microarchitecture design space and target workloads, how do we efficiently search for optimal microarchitectures that can satisfy the pre-determined performance, power, and area (PPA) design targets?

An example of the microarchitecture design space exploration.

An overview of the example microprocessor microarchitecture, including different components.

- Industry: computer architects' expertise.
- Academia:
 - Analytical methodology: interpretable PPA models, explainable search strategy, *etc.*¹²
 - Black-box methodology: machine-learning-based PPA modeling and search strategy.³⁴⁵

Limitations:

- Industry solution: architects' personal bias can yield sub-optimal solutions.
- Academic solution: not tightly coupled with expert knowledge & mathematical limitation in the Gaussian process modeling.

¹Tejas S Karkhanis and James E Smith (2004). "A First-order Superscalar Processor Model". In: *IEEE/ACM International Symposium on Computer Architecture (ISCA)*. IEEE, pp. 338–349.

²Tejas S Karkhanis and James E Smith (2007). "Automated design of application specific superscalar processors: an analytical approach". In: IEEE/ACM International Symposium on Computer Architecture (ISCA), pp. 402–411.

³Engin Ïpek et al. (2006). "Efficiently Exploring Architectural Design Spaces via Predictive Modeling". In: ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 195–206.

⁴Tianshi Chen et al. (2014). "Archranker: A ranking approach to design space exploration". In: *IEEE/ACM International Symposium on Computer Architecture (ISCA)*, pp. 1–12.

⁵Dandan Li et al. (2016). "Efficient design space exploration via statistical sampling and AdaBoost learning". In: *ACM/IEEE Design Automation Conference (DAC)*, pp. 1–6.

Limitation of Gaussian Process Modeling⁶

The kernel function of the Gaussian process mathematically attributes the PPA differences between two microarchitectures to the microarchitecture embedding distances.

A visualization of the design space for 458.sjeng.

An example of different BOOM microarchitectures to demonstrate the claim.

⁶Chen Bai et al. (2021). "BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration Framework". In: *IEEE/ACM International Conference on Computer-Aided Design (ICCAD)*, pp. 1–9.

Highlights of our new black-box methodology:

- Remove mathematical limitation in the Gaussian process modeling (*i.e.*, free of unrealistic assumptions).
- Tightly coupled with expert knowledge: *microarchitecture scaling graph*.
- PPA design preference-driven exploration.
- Lightweight agent training environment design to accelerate the learning process.

Preliminaries

RISC-V Microarchitecture Design Space

Table 1: RISC-V Microarchitecture Design Space

Design	Component	Parameters	Candidate	
Rocket		RAS	0:12:3+	
	Branch predictor	BTB.nEntries	0:56:14	
		BHT.nEntries	0:1024:256	
	x 1	nWays	1,2,4	
	I-cache	nTLBWays	4:32:4	
		FPU	1,2	
	Functional unit	mulDiv	1,2,3	
		VM	1,2	
		nSets	32,64	
	Dataha	nWays	1,2,4	
	D-cache	nTLBWays	4:32:4	
		nMSHRs	1,2,3	
	Propole prodictor	Туре	1,2,3	
	Branch predictor	maxBrCount	4:22:2	
		numFetchBufferEntries	6:46:2	
	IFU	fetchWidth	4,8	
		ftq.nEntries	12:64:4	
	pipe	1:5:1		
		24:160:4		
Small/Medium Large/Mega Giga SonicBOOM	DDE	numIntPhysRegisters	40:176:8	
	r Kr	numFpPRF	34:132:6	
		numFpPhysRegisters	1:5:1	
	ISU	numEntries	6:52:2	
		dispatchWidth	1:5:1	
	ISU	LDQ	6:32:2	
	1.50	STQ	6:36:2	
	Leacho	nWays	4,8	
	1-cacile	nSets	32,64	
		nWays	4,8	
	D-cache	nSets	64,128	
		nMSHRs	2:10:2	

* The values are start number:end number:stride, e.g., 0 : 12 : 3 denotes the entries of RAS can be 0, 3, 6, etc., until 12.

- Pre-RTL PPA modeling infrastructure:
 - GEM5⁷⁸ , McPAT⁹ , *etc*.
- RTL PPA modeling infrastructure:
 - Synopsys VCS¹⁰, Synopsys PrimeTime PX¹¹, etc.

⁷ Nathan Binkert, Bradford Beckmann, Gabriel Black, et al. (2011). "The Gem5 Simulator". In: SIGARCH Comput. Archit. News 39.2, pp. 1–7.
⁸ Jason Lowe-Power et al. (2020). "The GEM5 Simulator: Version 20.0+". In: arXiv preprint arXiv:2007.03152.

⁹Sheng Li et al. (2009). "McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures". In: IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 469–480.

¹⁰Synopsys VCS (2023). https://www.synopsys.com/verification/simulation/vcs.html.

¹¹Synopsys PrimeTime PX Power Analysis (2023). https://news.synopsys.com/index.php?s=20295&item=123041.

A microarchitecture scaling graph of an example out-of-order microprocessor.

- The microarchitecture scaling graph is a directed graph. Nodes are *components*. Edges are components' decision precedences¹².
- The graph is derived from the interval analysis. And the conclusion from the graph is general for Von Neumann architecture.

¹²Stijn Eyerman et al. (2009). "A Mechanistic Performance Model for Superscalar Out-of-order Processors". In: *Transactions on Computer Systems* 27.2, 12/29 pp. 1–37.

Reinforcement Learning Methodology

Reinforcement Learning (RL) Methodology

An overview of our reinforcement learning methodology.

- The state space is the microarchitecture design space.
- The action space is the candidate set of components' types of corresponding hardware resources.
- The state transition is defined based on the microarchitecture scaling graph.
- Embed the architect's PPA design preference in the methodology.

Reward scalarization:

$$r = r(\text{Perf}, \text{Power}, \text{Area}) \cdot (\alpha, \beta, \gamma)^{\top 13}$$

 α , β , and γ are weights controlling the PPA trade-off. Simplex constraints for PPA design preference ϕ :

$$r = r(\text{Perf, Power, Area}) \cdot \phi^{\top}$$

$$\forall i, \ \phi_i \ge 0, \ \sum_i \phi_i = 1$$
 (2)

(1)

Generalized Bellman optimality equality:

$$Q(s, a, \phi) = r(s, a) + \zeta \mathbb{E}_{s' \sim \mathcal{P}(\cdot | s, a)} \mathcal{T}(Q(s', a, \phi)),$$

$$\mathcal{T}(Q(s', a, \phi)) = \arg \max_{\substack{Q \ a' \in A, \phi' \in \Phi}} Q(s', a', \phi') \phi^{\top},$$
(3)

 ζ is the discount factor, $Q(s, a, \phi)$ is the state-action vector, and ϕ is the PPA design preference.

Optimization procedure with the generalized Bellman optimality equality.

14

¹⁴Axel Abels et al. (2019). "Dynamic Weights In Multi-objective Deep Reinforcement Learning". In: International Conference on Machine Learning (ICML). PMLR, pp. 11–20.

- We adopt the asynchronous advantage actor-critic (A3C)¹⁵.
- We utilize the conditioned neural network design¹⁶.

Gradients of the actor weights θ_a :

$$\nabla \boldsymbol{\theta}_{a} = \kappa \nabla_{\boldsymbol{\theta}_{a}} H(\pi(\boldsymbol{s}_{t};\boldsymbol{\theta}_{a})) + \\ \mathbb{E}_{\boldsymbol{\xi} \sim \pi}[\sum_{t=0}^{\infty} \nabla_{\boldsymbol{\theta}_{a}} \log \pi_{\boldsymbol{\theta}_{a}}(\boldsymbol{a}_{t} \mid \boldsymbol{s}_{t}) A(\boldsymbol{s}_{t}, \boldsymbol{a}_{t}, \boldsymbol{\phi}') \boldsymbol{\phi}^{\top}],$$
(4)

Loss function of the critic:

$$L_{c} = \rho \| (\mathbf{Q}^{*} - \mathbf{Q}(s, a, \phi'; \theta_{c})) \phi^{\top} \|_{2}^{2} + (1 - \rho) \| \mathbf{Q}^{*} - \mathbf{Q}(s, a, \phi'; \theta_{c}) \|_{2}^{2},$$
(5)

¹⁶Axel Abels et al. (2019). "Dynamic Weights In Multi-objective Deep Reinforcement Learning". In: International Conference on Machine Learning (ICML). PMLR, pp. 11–20.

¹⁵Volodymyr Mnih, Adria Puigdomenech Badia, et al. (2016). "Asynchronous Methods for Deep Reinforcement Learning". In: International Conference on Machine Learning (ICML). vol. 48, pp. 1928–1937.

Accelerate Learning via Lightweight Environment

An overview of the PPA calibration.

- PPA models calibration flow¹⁷.
- PPA models update policy.

¹⁷Jianwang Zhai et al. (2021). "McPAT-Calib: A Microarchitecture Power Modeling Framework for Modern CPUs". In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, pp. 1–9.

Experiments

Experiments Environment

- RTL implementation: Rocket & BOOM¹⁸¹⁹.
- Technology node: 7-nm ASAP7 PDK²⁰.
- EDA tools: Cadence Genus 18.12-e012_1, Synopsys VCS M-2017.03, PrimeTime PX R-2020.09-SP1, etc.
- Server: 80 × Intel(R) Xeon(R) CPU e7-4803 v2 @ 2.20GHz, 1TB main memory.

Baselines

- ISCA'14: ArchRanker²¹
- DAC'16: AdaBoost²²
- ICCAD'21: BOOM-Explorer²³

¹⁸Krste Asanović, Rimas Avizienis, Jonathan Bachrach, et al. (2016). The Rocket Chip Generator. Tech. rep. University of California, Berkeley.

¹⁹Jerry Zhao et al. (2020). "SonicBOOM: The 3rd Generation Berkeley Out-of-order Machine". In: Workshop on Computer Architecture Research with RISC-V (CARRV).

²⁰Lawrence T Clark et al. (2016). "ASAP7: A 7-nm FinFET Predictive Process Design Kit". In: Microelectronics Journal 53, pp. 105–115.

²¹Tianshi Chen et al. (2014). "Archranker: A ranking approach to design space exploration". In: *IEEE/ACM International Symposium on Computer Architecture (ISCA)*, pp. 1–12.

²²Dandan Li et al. (2016). "Efficient design space exploration via statistical sampling and AdaBoost learning". In: ACM/IEEE Design Automation Conference (DAC), pp. 1–6.

²³Chen Bai et al. (2021). "BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration Framework". In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–9.

Accuracy of Lightweight PPA Models

The accuracy of lightweight PPA models, and MAPE and Kendall τ curves *w.r.t.* the calibration data size.

Table 2: Comparison w. Human Efforts & Prior Arts

Design	Method	Performance	Power	Area	Perf /	Power	Perf	/ Area	$(\operatorname{Perf} \times \operatorname{Perf})$	f) / (Power \times Area)	Runtime
Design	meutou	IPC	W	mm ²	Val.	Ratio	Val.	Ratio	Val.	Ratio	
Rocket	Human Efforts	0.7338	0.0027	0.9082	267.4708	_ 1	0.8080	-	216.1090	-	-
	ISCA'14	0.8157	0.0023	0.7943	359.3222	$1.3434 \times$	1.0270	$1.2710 \times$	369.0075	1.7075×	$8.6111 \times$
	DAC'16	0.5485	0.0018	0.5337	305.3090	$1.1415 \times$	1.0278	$1.2721 \times$	313.8042	$1.4527 \times$	$5.8961 \times$
	ICCAD'21	0.7278	0.0021	0.7448	352.7177	$1.3187 \times$	0.9771	$1.2093 \times$	344.6327	$1.5947 \times$	$1.5011 \times$
	Ours	0.7278	0.0023	0.5762	313.6958	$1.1728 \times$	1.2631	1.5633 imes	396.2335	1.8335×	1.0000
Small SonicBOOM	Human Efforts	0.7837	0.0203	1.5048	38.6057	-	0.5209	-	20.1062	-	-
	ISCA'14	0.8197	0.0150	1.2838	54.7692	$1.4187 \times$	0.6385	$1.2260 \times$	34.9710	1.7393×	$5.8033 \times$
	DAC'16	0.8076	0.0147	1.2512	54.8119	1.4198 imes	0.6454	$1.2393 \times$	35.3765	$1.7594 \times$	$4.7918 \times$
	ICCAD'21	0.8469	0.0200	1.5026	42.3436	$1.0968 \times$	0.5636	$1.0821 \times$	23.8645	$1.1869 \times$	$1.3053 \times$
	Ours	0.8403	0.0152	1.2538	55.2813	1.4320 imes	0.6702	$1.2868 \times$	37.0491	1.8427×	1.0000
Huma IS	Human Efforts	1.1938	0.0256	1.9332	46.6952	-	0.6175	-	28.8363	-	-
	ISCA'14	1.2362	0.0196	1.6242	62.9622	$1.3484 \times$	0.7611	$1.2324 \times$	47.9192	1.6618×	$5.6879 \times$
SonicBOOM	DAC'16	1.3757	0.0254	1.9247	54.0894	$1.1584 \times$	0.7148	$1.1574 \times$	38.6609	$1.3407 \times$	$4.6966 \times$
SonicbOOM	ICCAD'21	1.4454	0.0271	2.1583	53.3342	$1.1422 \times$	0.6697	$1.0844 \times$	35.7170	1.2386×	$1.2793 \times$
	Ours	1.2872	0.0206	1.7351	62.5886	$1.3404 \times$	0.7419	$1.2014 \times$	46.4339	$1.6103 \times$	1.0000
Large SonicBOOM	Human Efforts	1.4871	0.0446	3.2055	33.3430	-	0.4639	-	15.4686	-	-
	ISCA'14	1.4900	0.0309	2.5420	48.2184	$1.4461 \times$	0.5861	$1.2634 \times$	28.2626	1.8271×	5.8920×
	DAC'16	1.4919	0.0324	2.6744	45.9976	$1.3795 \times$	0.5578	$1.2024 \times$	25.6592	$1.6588 \times$	$4.8651 \times$
	ICCAD'21	1.9162	0.0409	3.6715	46.8507	$1.4051 \times$	0.5219	$1.1250 \times$	24.4520	$1.5808 \times$	$1.3252 \times$
	Ours	1.5882	0.0314	2.5643	50.6324	$1.5185 \times$	0.6193	1.3350×	31.3580	2.0272×	1.0000
Mega SonicBOOM	Human Efforts	1.9500	0.0578	4.8059	33.7571	-	0.4058	-	13.6972	-	-
	ISCA'14	2.4957	0.0566	5.3676	44.0942	$1.3062 \times$	0.4650	$1.1459 \times$	20.5020	$1.4968 \times$	$5.5443 \times$
	DAC'16	2.4995	0.0562	5.3797	44.4483	$1.3167 \times$	0.4646	$1.1451 \times$	20.6513	$1.5077 \times$	$4.5780 \times$
	ICCAD'21	2.4823	0.0607	4.7008	40.9170	$1.2121 \times$	0.5281	$1.3014 \times$	21.6066	$1.5774 \times$	$1.2470 \times$
	Ours	2.5232	0.0557	5.2512	45.3005	$1.3420 \times$	0.4805	$1.1842 \times$	21.7674	1.5892×	1.0000
Giga SonicBOOM	Human Efforts	1.8717	0.0716	5.0691	26.1538	-	0.3692	-	9.6572	-	-
	ISCA'14	2.2528	0.0622	6.0010	36.2192	$1.3849 \times$	0.3754	$1.0167 \times$	13.5970	$1.4080 \times$	5.6321×
	DAC'16	2.2522	0.0773	5.5995	29.1480	$1.1145 \times$	0.4022	$1.0893 \times$	11.7236	$1.2140 \times$	$4.6505 \times$
	ICCAD'21	2.2650	0.0745	5.8652	30.4162	$1.1630 \times$	0.3862	$1.0459 \times$	11.7460	1.2163×	$1.2668 \times$
	Ours	2.2692	0.0595	5.7459	38.1587	$\textbf{1.4590}\times$	0.3949	$1.0695 \times$	15.0696	$1.5605 \times$	1.0000

1 "-" denotes not applicable.

24/29

Summary:

- Our solutions achieve an average of 24.64%, 17.13%, and 6.33% than ICCAD'21, DAC'16, and ISCA'14 in PPA trade-off, respectively with 4.07× higher efficiency than baselines.
- For large-scale BOOM, compared to human implementations, our solution demonstrates significant improvements in three metrics by factors of 1.35×, 1.23×, and 1.66×, respectively.

Conclusion

- Remove mathematical limitation in the Gaussian process modeling (*i.e.*, free of unrealistic assumptions).
- Tightly coupled with expert knowledge: *microarchitecture scaling graph*.
- PPA design preference-driven exploration.
- Lightweight agent training environment design to accelerate the learning process.
- Experiments show that our method achieves an average of 16.03% improvement in PPA trade-off with 4.07× higher efficiency than previous state-of-the-art approaches.

- Remove mathematical limitation in the Gaussian process modeling (*i.e.*, free of unrealistic assumptions).
- Tightly coupled with expert knowledge: *microarchitecture scaling graph*.
- PPA design preference-driven exploration.
- Lightweight agent training environment design to accelerate the learning process.
- Experiments show that our method achieves an average of 16.03% improvement in PPA trade-off with 4.07× higher efficiency than previous state-of-the-art approaches.

Discussion:

- Why do we choose A3C instead of PPO or SAC?
- Why does our method not perform very well on medium-scale SonicBOOM?
- Is the RL method the sole remedy to resolve the mathematical limitation (unrealistic assumption)?

THANK YOU!